ผู้สนใจสามารถรับข้อมูล เสนอข้อคิดเห็นเกี่ยวกับงาน (TOR) การรับบุคคลากร
ปรับอากาศอาคารสำนักงาน ศปภ. ระหว่างวันที่ 8 – 12 มกราคม 2557 ณ หน่วยงานโดยเปิดเผยตัว
ได้ที่

1. ทางไปรษณีย์ ส่งมั่น
สำนักบริหารทรัพย์สิน ชั้น 5 สำนักงานคณะกรรมการกักกันและส่งเสริมการประกอบธุรกิจประกันภัย (ศปภ.) เลขที่ 22/79 ถนนรัชดาภิเษก เขตหลักฐาน กรุงเทพมหานคร 10900

2. ทางโทรศัพท์
หมายเลข 02-515-3985

3. ทาง e-mail
am@oic.or.th
ร่างขอบเขตงาน (TERM OF REFERENCE : TOR)
การประกวดราคา จ้างปรับปรุงระบบปั้นจักร
สำนักงานคณะกรรมการกํากับและส่งเสริมการประกอบธุรกิจประกันภัย ถนนรัชดาภิเษก

1. ความเป็นมา

สำนักงาน ครปภ. ได้รับงบประมาณปี 2557 เพื่อทําการปรับปรุงระบบปั้นจักร ตามแบบธรรมเนียมสูญ โดยทําการติดตั้งเครื่องจักรในหน้า หน้าที่ด้าน เครื่องสูบน้ำ และอุปกรณ์ประกอบต่าง ๆ ใหม่ ทั้งหมด เป็นเงิน 31,000,000.- บาท (สามสิบลํ้าแหนกลบบาท)

2. วัตถุประสงค์

เพื่อจัดซื้อเครื่องจักรในหน้า หน้าที่ด้าน เครื่องสูบน้ำ ระบบไฟฟ้า และอุปกรณ์ประกอบต่าง ๆ

3. สถานที่ดําเนินการ

อาคารที่ทําการสำนักงานคณะกรรมการกํากับและส่งเสริมการประกอบธุรกิจประกันภัย เลขที่ 22/79 ถนนรัชดาภิเษก แขวงวัดพระแก้ว เขตจอมทอง กรุงเทพมหานคร

4. คุณสมบัติผู้เสนอราคา

4.1 ผู้เสนอราคาต้องเป็นผู้มีอาชีพรับจ้างงานที่ประกวดราคาทั่วไป

4.2 ผู้เสนอราคาต้องไม่เป็นผู้ที่ถูกงดซื้อไม่ในปัญชีรายชื่อผู้ต้องจ้างของทางราชการและได้แจ้งเวียนซักล่วง หรือไม่เป็นผู้ที่มีการดำเนินการสินสติสิทธิ์หรือสิทธิ์อันเป็นผลเป็นผู้ต้องจ้างตามระเบียบของทางราชการ

4.3 ผู้เสนอราคาต้องเป็นผู้มีคุณสมบัติเกี่ยวกับการจ้างของสำนักงาน

4.4 ผู้เสนอราคาต้องไม่เป็นผู้ได้รับเอกลักษณ์หรือความคุ้มกัน ซึ่งอาจปฏิเสธหรือขัดขวางไม่ได้

4.5 ผู้เสนอราคาต้องไม่เป็นผู้ที่มีผลประโยชน์ร่วมกันกับผู้เสนอราคาธุรกิจ และ/หรือ ต้องไม่เป็นผู้มีผลประโยชน์ร่วมกันกับผู้เสนอราคา เช่น ผู้ให้บริการหรือตลาดอิเล็กทรอนิกส์

4.6 ผู้เสนอราคาต้องมีผลงานเรียบร้อยของการติดตั้งงานที่ประกวดราคารายวิ่งจอมทอง หรือขนาดที่ด้านผู้ที่มีค่า thấpกว่า 16,000,000.- บาท ต้องมีสัญญา

[ลงชื่อ]

[ลายเซ็น]
5. แบบบูรณาการหรือคุณลักษณะเฉพาะ

จัดหาติดตั้งเครื่องทำน้ำอิ่น หม้อสุญ หรือสุญบ๊น พร้อมอุปกรณ์ประกอบต่าง ๆ ตามแบบแบบ
โดยใช้การและมีแบบ เลขที่แบบ M – 56108 และรายละเอียดข้อกำหนดในเอกสารแบบท้าย

6. ผู้เสนอราคาจะต้องจัดทำตารางแนบเพิ่มเติม

ได้แนบบูรณา หรือคุณลักษณะเฉพาะของเครื่องทำน้ำอิ่นตามแบบและรายละเอียดข้อกำหนด เพื่อ
ประกอบการพิจารณา ตามตัวอย่างตารางแนบเพิ่มเติมดังนี้

ตารางแนบเพิ่มเติม แบบบูรณาหรือคุณลักษณะเฉพาะ

<table>
<thead>
<tr>
<th>รายละเอียดที่กำหนดไว้</th>
<th>รายละเอียดที่ผู้รับจ้างเสนอ</th>
<th>เอกสารต้องห้าม</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. เครื่องทำน้ำอิ่นเป็นแบบ........</td>
<td>1. ..</td>
<td>ห้าม</td>
</tr>
<tr>
<td>2. ..</td>
<td>2. ..</td>
<td></td>
</tr>
<tr>
<td>3. ..</td>
<td>3. ..</td>
<td></td>
</tr>
</tbody>
</table>

7. การทำประกันภัยและระบบความปลอดภัย

ผู้เสนอราคาต้องมีความพร้อมด้านการก่อสร้าง เพื่อให้การปฏิบัติงานมีประสิทธิภาพตามแผนงาน
และมีระบบความปลอดภัยที่ดีในการทำงานตามที่กฎหมายกำหนด โดยเสนอแผนงานและเอกสารต่างๆ ดังนี้

7.1 แผนการดำเนินการก่อสร้าง (Master Construction Schedule) โดยแสดงแผนการทำงานที่
สมบูรณ์ของงานแต่ละงานที่กำหนด ในรูปแบบของ Bar chart หรือ Microsoft Project

7.2 ข้อเสนอ “ระบบการจัดการความปลอดภัยในการทำงานก่อสร้าง” ตามระดับมาตรฐานความ
มาตราการป้องกันและควบคุมอุบัติเหตุในงานก่อสร้างของรัฐ และผู้เสนอราคาที่ได้รับการคัดเลือกเป็นผู้รับจ้างจะต้อง
จัดทำประกันภัยในการทำงานตามแบบก่อสร้าง ติดตั้งและปรับปรุงระบบป้องกันเหตุการณ์การสูญหาย ในสุทธิภัยที่
อาจเกิดขึ้น ณ ที่ค่ายเนื่องจากการรื้อก่อสร้าง ติดตั้งและปรับปรุงระบบป้องกันความ งานที่เกี่ยวข้องของผู้รับ
จ้าง รวมทั้งกรณีที่ได้เกิดขึ้นตามที่เกิดขึ้นต่อไปนี้ 3

8. ระยะเวลาดำเนินการ

กำหนดงานแล้วเสร็จภายใน 240 วัน นับถัดจากวันลงรายละเอียดงาน
9. ระบายความเย็น

ผู้รับจ้าง ต้องจัดเตรียมระบบการส่งความเย็น หล่อเย็นเครื่องจักรและอุปกรณ์ประกอบต่าง ๆ ณ อุปกรณ์สีน้ำเงิน ดังนี้

งวดที่ 1 เป็นจำนวนเงินไม่เกินตรีร้อยละ 20 ของสัญญา เมื่อผู้รับจ้างได้ดำเนินการตัดสินไปนี้

1.1 เสนอรายละเอียดการอนุมัติใช้เครื่องจักรที่น่าเชื่อถือและสุจริตตามที่ระบุไว้ในตัวชี้วัด
1.2 แบบแสดงการติดตั้ง (Shop Drawing) และแผนการดำเนินงานเพื่อเสนอขออนุมัติ
1.3 ติดตั้งงานระบบไฟฟ้าสำหรับเครื่องจักรที่น่าเชื่อถือและอุปกรณ์ต่าง ๆ เสร็จไม่น้อยกว่าร้อยละ 50
1.4 ติดตั้งงาน Temperature sensor, Room thermostat และ 2-way valve สำหรับเครื่อง AHU เสร็จไม่น้อยกว่าร้อยละ 50

งวดที่ 2 เป็นจำนวนเงินไม่เกินตรีร้อยละ 30 ของสัญญา เมื่อผู้รับจ้างได้ดำเนินการตัดสินไปนี้

2.1 มอบเครื่องจักรที่น่าเชื่อถือตามที่ติดตั้ง เครื่องที่ 1 และเครื่องที่ 2
2.2 ทำการติดตั้งเครื่องที่น่าเชื่อถือและอุปกรณ์ประกอบต่าง ๆ ตามแบบรูปและรายละเอียด

งวดที่ 3 เป็นจำนวนเงินไม่เกินตรีร้อยละ 30 ของสัญญา เมื่อผู้รับจ้างได้ดำเนินการตัดสินไปนี้

3.1 มอบเครื่องที่น่าเชื่อถือตามที่ติดตั้ง เครื่องที่ 3 และเครื่องที่ 4
3.2 ทำการติดตั้งเครื่องที่น่าเชื่อถือและอุปกรณ์ประกอบต่าง ๆ ตามแบบรูปและรายละเอียด

งวดที่ 4 เป็นจำนวนเงินไม่เกินตรีร้อยละ 20 ของสัญญา เมื่อผู้รับจ้างได้ดำเนินการตัดสินไปนี้

4.1 ทำการติดตั้งเครื่องที่น่าเชื่อถือและอุปกรณ์ประกอบต่าง ๆ ตามแบบรูปและรายละเอียด

AHU แล้วเสร็จ
4.2 ติดตั้งเครื่องทำน้ำเย็นครึ่งที่ 3 และเครื่องที่ 4 แล้วเสร็จ ดำเนินการทดสอบระบบ ให้ใช้งานได้
ถูกต้องสมบูรณ์ตามแบบรูปและรายการซื้อสั่งผลิต
4.3 เก็บรายละเอียดการติดตั้งเครื่องทำน้ำเย็นครึ่งที่ 3 และเครื่องที่ 4 ตามแบบรูปและรายละเอียดประกอบแบบ
ซ่อมบำรุงเครื่องทำน้ำ เรียบร้อยสมบูรณ์ พร้อมทั้งทำการตรวจสอบวินัยที่ก่อสร้างหรือปรับเปลี่ยนที่มีส่วนเกี่ยวกับ
ที่ก่อสร้าง
4.4 ดำเนินการทดสอบระบบทั้งหมด ให้ใช้งานได้ถูกต้องสมบูรณ์ตามแบบรูปและรายการซื้อสั่งผลิต
4.5 จัดส่งแบบแสดงรายการติดตั้งจริง (AS – BUILT Drawing) ทั้งระบบ ตามข้อกั้นเหตุในแบบข้อกั้น
เอกสารตู้มือการใช้งาน
4.6 ทำการฝึกอบรมการใช้งานเครื่องทำน้ำเย็น ครึ่งที่ 3 และเครื่องที่ 4 ระบบ Chiller Plant
Management System และการปรับอุณหภูมิในห้อง Room Thermostat Temperature Sensor ให้กับเจ้าหน้าที่
ผู้ดูแลรักษาขอบเขตผู้ว่าราชการ

10. วงเงินในการจัดหา

วงเงินในการจัดหาตามผลการประมวลรายการทั้งหมด คณะกรรมการกำหนดราคาถัง เป็นจำนวนเงิน 30,399,722 บาท (สามสิบสามล้านสามแสนเก้าหมื่นเจ็ดพันเจ็ดร้อยยี่สิบสองบาทถ้วน) รวมภาษีมูลค่าเพิ่มแล้ว

11. การรับประกัน

ผู้รับจ้างต้องรับประกันความชำรุดฉับพล็องของงานจ้างที่เกิดขึ้นภายในระยะเวลาไม่น้อยกว่า 2 ปี
นับจากวันที่คณะกรรมการตรวจรับงานแล้วเสร็จ โดยผู้รับจ้างต้องประสานแผนกให้บริการได้ดีและเต็มที่ใน 10
วัน นับจากที่ได้รับแจ้งความชำรุดฉับพล็อง

12. สถานที่ติดต่อ

เพื่อทราบข้อมูลเพิ่มเติม และส่งข้อเสนอแนะ วิจารณ์ หรือแสดงความคิดเห็นสามารถส่งข้อติดต่อด้าน
หรือข้อเสนอแนะ วิจารณ์ เกี่ยวกับร่างของขอบเขตของงานนี้ได้ที่

11.1 ทางไปรษณีย์

ส่งผ่าน สำนักบริหารทรัพย์สิน
สำนักงานคณะกรรมการกากับและส่งเสริมการประกอบธุรกิจประกันภัย
22/79 ถนนราชดำเนิน แขวงจักรวรรดิ เขตจตุจักร กรุงเทพฯ 10900
11.2 โทรสาร 025153999
11.3 โทรFax 025153970
รายชื่อคณะกรรมการ

(ลงชื่อ)..ประธานคนทำงาน
(นายรัชญา สอนสวัสดิ์)

(ลงชื่อ)..คณะทำงาน
(นางจอย วงษ์สวัสดิ์วัฒนา)

(ลงชื่อ)..คณะทำงาน
(นางเรียวภัทร พิพ lý)

(ลงชื่อ)..คณะทำงาน
(นางพิริญฉัตร ทัพพพรม)

(ลงชื่อ)..คณะทำงาน
(นายสุนทร นั่งเพชร)

(ลงชื่อ)..คณะทำงานและ
(นายภิรมย์ นิยม)

(ลงชื่อ)..เลขานุการ

(นายพิพัฒ ใเหนซ)
ข้อกำหนดงานระบบปรับอากาศ

โครงการ: ปรับปรุงระบบควบคุมการปรับอากาศและการติดตั้งเครื่องทำน้ำเย็น

อาคารสำนักงานคณะกรรมการกากับและส่งเสริมการประกอบธุรกิจประกันภัย
สารบัญ

<table>
<thead>
<tr>
<th>หมวดที่</th>
<th>หัวข้อ</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>การดำเนินงานที่เกี่ยวกับกลุ่มงานและภูมิทัศน์ และโครงสร้าง</td>
<td>1 - 1/2</td>
</tr>
<tr>
<td>2</td>
<td>การประสานงาน</td>
<td>2 - 1/1</td>
</tr>
<tr>
<td>3</td>
<td>แบบและเอกสาร</td>
<td>3 - 1/2</td>
</tr>
<tr>
<td>4</td>
<td>เครื่องวัดคุณภาพและอุปกรณ์</td>
<td>4 - 1/2</td>
</tr>
<tr>
<td>5</td>
<td>การทดสอบ การป้องกันการลุกกร่อน</td>
<td>5 - 1/2</td>
</tr>
<tr>
<td>6</td>
<td>ราชการสิ่งแวดล้อมและป่าปั้นยิ่ง</td>
<td>6 - 1/3</td>
</tr>
<tr>
<td>7</td>
<td>เครื่องทำน้ำเย็นแบบ SCREW CHILLER</td>
<td>7 - 1/5</td>
</tr>
<tr>
<td>8</td>
<td>หอเลี้ยงน้ำ</td>
<td>8 - 1/3</td>
</tr>
<tr>
<td>9</td>
<td>เครื่องสูบน้ำ</td>
<td>9 - 1/2</td>
</tr>
<tr>
<td>10</td>
<td>ต้นขาของตัวของน้ำ</td>
<td>10 - 1/1</td>
</tr>
<tr>
<td>11</td>
<td>การปรับสภาพน้ำของระบบน้ำเย็น</td>
<td>11 - 1/1</td>
</tr>
<tr>
<td>12</td>
<td>ท่อน้ำ</td>
<td>12 - 1/5</td>
</tr>
<tr>
<td>13</td>
<td>วาล์วและอุปกรณ์ประกอบท่อน้ำ</td>
<td>13 - 1/4</td>
</tr>
<tr>
<td>14</td>
<td>ฉนวนกันทะน้ำเย็น</td>
<td>14 - 1/2</td>
</tr>
<tr>
<td>15</td>
<td>ระบบควบคุมอัตโนมัติ</td>
<td>15 - 1/3</td>
</tr>
<tr>
<td>16</td>
<td>ระบบไฟฟ้า</td>
<td>16 - 1/4</td>
</tr>
<tr>
<td>17</td>
<td>อุปกรณ์เชิงนิยมสั่นไฟฟ้า</td>
<td>17 - 1/3</td>
</tr>
<tr>
<td>18</td>
<td>การทดสอบควบคุมความสะอาด และการปรับแต่ง</td>
<td>18 - 1/2</td>
</tr>
<tr>
<td>19</td>
<td>อุปกรณ์ควบคุมความเร็วระบบของโมดูลส์การผลิต</td>
<td>19 - 1/4</td>
</tr>
<tr>
<td>20</td>
<td>ตัวอย่างอุปกรณ์มาตรฐาน</td>
<td>20 - 1/5</td>
</tr>
<tr>
<td>21</td>
<td>Chiller Plant Management System (CPMS)</td>
<td>21 - 1/2</td>
</tr>
</tbody>
</table>
หมวดที่ 1
การดำเนินงานที่เกี่ยวข้องกับงานสถาบันการและโครงสร้าง

1. การกระทบต่อและ การตัดสิน

1.1 ผู้รับจ้างต้องตรวจสอบสิ่งต่าง ๆ สำหรับติดตั้งงานระบบในความรับผิดชอบ จากแบบ สถาปัตยกรรมและโครงสร้าง เพื่อป้องกันความต้องการและความภักดีต่อ

1.2 การมีความต้องการแก้ไข ขนาด-ด้านหน้า ของสิ่งต่าง ๆ จะต้องมีการรับผิดชอบเพิ่มเติมหากได้ใช้ เครื่องมือในการออกแบบสถาปัตยกรรมและโครงสร้าง มีการจัดตั้งองค์กรของผู้รับจ้าง และ/ หรือ รายละเอียดผลการติดตั้งสิ่งต่าง ๆ ที่ผู้บุคคลงานคงอยู่อย่างน้อย 45 วัน ก่อนที่ผู้รับจ้างงานคงอยู่จะสามารถดำเนินการในช่วงงานที่เกี่ยวข้องดังนี้

1.3 การส่งต่อ ตัด หรือ เจาะ ตัวแทนหน้าที่ของระบบ ผู้รับจ้างต้องจัดทำรายการละเอียดของกรรมวิธี ดำเนินงาน เพื่อป้องกันผลกระทบที่อาจเกิดขึ้นได้ ให้เสนอขออนุมัติจาก ผู้ควบคุมก่อนการดำเนินการอย่างน้อย 7 วัน

2. การอุดหน่วยวาง

2.1 ภายหลังการติดตั้ง วัสดุ-อุปกรณ์ ตัวข้อม่อปิด หรือ ช่องเจาะใด ๆ ก็ตาม ผู้รับจ้างต้องดำเนินการ อุดหน่วยวางที่ถูกต้อง อย่างถูกต้องและวิธีที่เหมาะสม โดยต้องได้รับอนุมัติจากผู้ควบคุมงาน

2.2 การเลือกใช้วัสดุ และวิธีการในการอุดหน่วยวางที่ถูกต้อง นอกจากรักษาความสะอาด ไม่สามารถทำให้เกิดการรั่วซึม ได้ในอนาคต ผู้รับจ้างต้องไม่ทำการปิดกันไฟและด้านหน้า ตลอดจนการปิดกันเชื่อมต่อ หรือต่อตัว

2.3 การอุดหน่วยวางในส่วนหนึ่งส่วนใดของอาคาร ไม่ว่าจะเป็นหน้า หรือฝาผนังที่เป็นโครงสร้างองค์กร หรือโครงสร้าง และหน้าที่เป็นโครงสร้างเพื่อกันไฟ ต้องใช้วัสดุและวิธีที่สามารถทนไฟได้ไม่น้อย กว่า 2 ชั่วโมง เว้นแต่จะได้ระบุไว้เป็นอย่างอื่น

3. ช่องปิดเพื่อการควบคุมอากาศเครื่องจักรและวัสดุ-อุปกรณ์

ผู้รับจ้างต้องตรวจสอบ และ/หรือ แสดงความต้องการ ช่องปิดเพื่อเพื่อการควบคุมอากาศเครื่องจักร วัสดุ-อุปกรณ์ ที่ทำงานการติดตั้งและยังคงการทำงานต่อไปเชิง เรือ คัดเลือกแบบและก้านที่ใด อย่างต่อเนื่อง ตามความจำเป็น ต่อผู้ควบคุมงาน เพื่อพิจารณาดำเนินการตามความเหมาะสม

4. กำรยืนท่าที่เครื่อง

ผู้รับจ้างต้องเป็นผู้จัดทำ แทน ฐาน และอุปกรณ์ของรับน้าหนักเครื่องจักร ท่อผนัง และอุปกรณ์ต่าง ๆ ให้มี ความแข็งแรง สามารถที่จะต้องสะท้อนเพื่อป้องกัน อุปกรณ์ ขณะใช้งานได้เป็นอย่างดี โดยข้อมูล รายละเอียดทางคณิตศาสตร์ และตัวแฝง ที่จะจัดทำ ต้องเสนอขออนุมัติจากผู้ควบคุมงานอย่างน้อย 15 วัน ก่อนดำเนินการ
5. การยืดหยุ่นและอุปกรณ์กันโครงสร้างอาคาร

5.1 ผู้รับจ้างต้องจัดหาอุปกรณ์ยืด แขวนท่อ เครื่องและอุปกรณ์ที่เหมาะสมกับโครงสร้างอาคาร การประกอบโครงสร้างต้องทำด้วยความระมัดระวังไม่เป็นเหตุให้เกิดอันตรายได้ ผู้รับจ้างต้องได้รับการอนุมัติจากผู้ดูแลงานก่อนดำเนินการยืด แขวนได้

5.2 EXPANSION SHIELD ที่ใช้จะต้องเป็นกันกระแทกต้องเป็นโลหะตามมาตรฐานของผู้ผลิต และต้องได้รับอนุมัติจากผู้ดูแลงาน

5.3 ขนาดและชนิดของอุปกรณ์ยืด แขวน จะต้องเป็นที่รับรองว่าสามารถบรรจุน้ำมันได้ โดยมีค่าความปลอดภัยไม่ต่ำกว่า 3 เท่าของน้ำมันใช้งาน (SAFETY FACTOR = 3)

5.4 การยืดหยุ่นกับโครงสร้างอาคารต้องแน่นใจว่าจะไม่เกิดความเสียหาย หรือเกิดขวางงานระบบอื่นๆ

6. การป้องกันมัจฉาข้ามอาคาร

การจัดตั้งวัสดุ-อุปกรณ์ ที่ใกล้กันกับบริเวณที่มีความสูงสุด หรือชื่อแปลงที่บ้านนอกอาคาร ผู้รับจ้างต้องจัดทำรายละเอียดแสดงวิธีการติดตั้งและเสริมเพิ่มเติม วัสดุ-อุปกรณ์ต่างๆ ให้ผู้ดูแลงานอนุมัติก่อนดำเนินการใดๆ เนื่องจากการป้องกันมัจฉาข้ามอาคารเป็นไปตามสมมุติฐาน
หมวดที่ 2
การประสานงาน

1. การให้ความร่วมมือต่อผู้คุมงานและวิศวกร

ผู้รับจ้างต้องให้ความร่วมมือต่อผู้คุมงาน และวิศวกรในการทำงานตรวจสอบ วัด เทียบ จัดทำตัวอย่าง และอื่นๆ ตามความก้าวกระฉ่อน

2. การประชุมโครงการ

ผู้รับจ้างต้องเข้าร่วมประชุมโครงการ และประชุมใหญ่ห่วงงานซึ่งจัดให้มีทุกปีประจำปี โดยผู้รับจ้างงาน
อาสาหรือผู้คุมงาน ผู้รับจ้างร่วมประชุมต้องมีอำนาจในการตัดสินใจสิ่งการ และทราบรายละเอียดของ
โครงการเป็นอย่างดี

3. สาระธุรกิจ เพื่อใช้ระหว่างการก่อสร้าง

สิ่งใดได้กำหนดไว้ในรายละเอียด ผู้รับจ้างต้องเป็นผู้จัดหาหน้าประปราย ไฟฟ้า โทรศัพท์ ฯลฯ ซึ่งเกี่ยวกับ
ระบบงานในความรับผิดชอบของผู้รับจ้างสำหรับใช้ในการก่อสร้างตามโครงการ

4. การรักษาความสะอาด

ผู้รับจ้างต้องรักษาสะอาด เศรษฐภัพและสิ่งของเหลือใช้ออกจากที่ที่ปฏิบัติงาน โดยให้เจ้าหน้าที่ออก
通知书หานอกงาน

5. การรักษาความปลอดภัย

ผู้รับจ้างต้องรับผิดชอบในการรักษาความปลอดภัยด้านต่างๆ ภายในสถานที่ก่อสร้าง

6. การติดต่อหน่วยงานรัฐและสำนักงานใน

สิ่งใดได้กำหนดไว้ในรายละเอียด ผู้รับจ้างต้องมีหน้าที่เป็นผู้ติดต่อประสานงานกับหน่วยงานของรัฐ (และ/
หรือ เอกชน) ที่เกี่ยวข้องกับผู้รับจ้าง เพื่อให้ได้มาซึ่งความสมบูรณ์ของระบบหนัง
หมวดที่ 3
แบบและเอกสาร

1. แบบใช้งาน (SHOP DRAWINGS)

1.1 กำหนดให้บริการว่าจ้าง ผู้รับจ้างต้องจัดทำแบบใช้งาน ซึ่งแสดงรายละเอียดของเครื่อง อุปกรณ์ และต้นทุนที่จะทำการติดตั้ง ปันแผนที่และผู้มีสิทธิ์ในการต่อผู้จ้างงานอย่างน้อย 30 วันก่อนการติดตั้ง

1.2 ให้ทราบผู้รับจ้างของผู้รับจ้าง ต้องตรวจสอบแบบใช้งานให้ถูกต้อง ตามความต้องการใช้งานและ การติดตั้ง พร้อมทั้งยื่นแบบรับรอง และขออนุญาตที่ก่อสร้างแบบที่แสดงก่อนมีแผน

1.3 แบบใช้งานต้องมีอักษร และมาตรฐานที่เหมาะสมตามมาตรฐาน ทั้งนี้ขึ้นอยู่กับต้องการของผู้จ้างงาน

1.4 ผู้มีสิทธิ์ที่จะดูทั้งหมด และมีหน้าที่ส่งผู้ให้บริการจัดเตรียมแบบจำลองแสดงการติดตั้งที่มีความส่วนตัวของงานที่เห็นเป็นจำเป็น

1.5 ผู้รับจ้างต้องไม่ดำเนินการใด ๆ ก่อนที่แบบใช้งานจะได้รับการอนุมัติจากผู้มีสิทธิ์ หากผู้มีสิทธิ์ไม่เห็นด้วยให้ทราบทันที และจะดำเนินการตามแบบ และหรือ การติดตั้ง ที่ได้รับอนุมัติให้ผู้รับจ้างต้องดำเนินการเสร็จไว้โดยไม่ช้ากว่า 12 หน้า

1.6 แบบใช้งานที่ได้รับอนุมัติแล้ว ให้ทราบความเป็นไปการพ้นความรับผิดชอบของผู้รับจ้าง หากผู้มีสิทธิ์ตรวจพบข้อผิดพลาดในภายหลัง ผู้รับจ้างต้องดำเนินการแก้ไขให้ถูกต้อง

1.7 แบบใช้งานที่ไม่มีรายละเอียดเพียงพอ ผู้มีสิทธิ์จะแจ้งให้ผู้รับจ้างทราบ และอาจส่งคืนโดยไม่มีการพิจารณาการใด

2. แบบก่อสร้างจริง (AS-BUILT DRAWINGS)

2.1 ในการดำเนินการติดตั้ง ผู้รับจ้างต้องจัดทำแบบจำลองที่มีผลต่อการติดตั้ง แสดงตำแหน่งของเครื่อง อุปกรณ์ รวมทั้งการก่อสร้างอื่น ๆ ที่ปรากฏในงานจะตรวจดูได้จากแบบจำลองต่าง ๆ ผู้มีสิทธิ์จะแสดงตามแบบจำลองที่ได้รับอนุมัติ

2.2 แบบสร้างจริงต้องมีข้อมูลและราคารวม ทำให้แบบใช้งาน นอกจากแบบจำลอง ให้ใช้แบบราคามีตามแบบจำลองที่ได้รับอนุมัติ

2.3 แบบสร้างจริงต้องจัดให้ผู้มีสิทธิ์ มีอัตราค่าบริการตาม ผู้มีสิทธิ์จะกำหนดตามลำดับที่ได้รับอนุมัติ

2.4 แบบสร้างจริงอาจมีการดำเนินการในที่ต่างๆ เพื่อสะดวกในการบำรุงรักษา หรือเพื่อการใช้งาน

3. หนังสือคู่มือการใช้งาน และคู่มือการรักษาเครื่อง อุปกรณ์

3.1 หนังสือคู่มือการใช้งานและคู่มือการรักษาเครื่อง อุปกรณ์ เป็นเอกสารประกอบการส่งมอบงานผู้รับจ้างต้องจัดเตรียมข้อมูลเพื่อประโยชน์ สำหรับให้เจ้าของโครงการในเวลานั้นส่งมอบงาน
3.2 หนังสือคู่มือ ควรแบ่งออกเป็น 4 ภาค คือ

ภาคที่ 1 ประกอบด้วยเอกสาร รายละเอียด ข้อมูลของเครื่อง อุปกรณ์ทั้งหมดที่ได้เสนอ และ
ได้รับการอนุมัติให้ใช้ในโครงการ (SUBMITTAL DATA) ประกอบด้วยคัดลอกเครื่อง
อุปกรณ์ แยกเป็นหมวดหมู่ พร้อมทั้งเอกสารแนะนำการติดตั้ง ข้อมูลการบริการติดต่อกับ
(INSTALLATION, OPERATION AND MAINTENANCE MANUAL) รวมทั้งรายชื่อ
บริษัทผู้แทนจำหน่ายเครื่องและอุปกรณ์

ภาคที่ 2 ประกอบด้วยรายงานการทดสอบเครื่องและระบบตามความเป็นจริง (TEST REPORT)

ภาคที่ 3 ประกอบด้วยรายการเครื่อง อะไหล่ และข้อแนะนำขั้นส่วนและไหล่ที่ควรมีสิ่งรองไว้
ขณะใช้งาน (RECOMMEND SPARE PARTS LIST)

ภาคที่ 4 ประกอบด้วยรายการตรวจสอบ แลำบูรณาการเครื่องอุปกรณ์แต่ละชนิด

3.3 หนังสือคู่มือนี้ ควรแบ่งหมวดเฉพาะสำหรับ เครื่องจักร และหรือ อุปกรณ์แต่ละชนิดประเภท
หมวดที่ 4

เครื่องวัสดุและอุปกรณ์

1. เครื่องวัสดุและอุปกรณ์ ที่น่าจะใช้งาน

1.1 เครื่องวัสดุและอุปกรณ์ที่น่าจะต้องมีให้เพียงพอและไม่เกิน限度ไม่ใช้ในงานมาก่อน เจ้าของโครงการต้องชี้แจงว่ามีวัสดุและอุปกรณ์ที่ใช้หรือไม่ใช่พร้อมที่จะพัฒนาให้สามารถใช้ได้ในโครงการ หรือไม่ใช่โครงการในกรณีที่เจ้าของโครงการต้องการให้เจ้าหน้าที่เช็คได้เป็นผู้ตรวจสอบ ผู้รับจ้างต้องดำเนินการโดยทันสมัย

1.2 ที่มีความจำเป็นต้องทำให้ผู้รับจ้างให้สามารถจัดหาวัสดุอุปกรณ์ตามที่ได้แจ้งไว้ในรายการงาน หรือแหล่งด้วยอย่างไรก็ตามเจ้าของโครงการหรือสถาปนิกผู้รับจ้างต้องจัดหาอุปกรณ์ที่มารับแทนหรือมีการจัดหาอุปกรณ์ชุดอุปกรณ์ที่สำคัญเพื่อประกอบการของอุปกรณ์ที่ต้องมีเจ้าของโครงการ

1.3 ความเสียหายที่เกิดขึ้นร่วมกัน การขนส่ง ติดตั้ง หรือการทดสอบ ต้องดำเนินการชดเชยหรือเปลี่ยนให้เหมาะสมตามความเห็นชอบของเจ้าของโครงการหรือผู้ขอรับงาน

2. การขนส่งและการนำไปเรียงอุปกรณ์เข้ายังหน่วยงาน

2.1 ผู้รับจ้างต้องรับมือชดเชยได้ในข้อเป็นเป็นความเสียหายที่เกิดขึ้น ในการขนส่งเครื่องอุปกรณ์มาถึงหน่วยงานและสถานที่ติดตั้ง

2.2 ผู้รับจ้างต้องจัดทำมาถึงมาตรฐานการนำไปเรียงอุปกรณ์เข้ายังหน่วยงาน และแจ้งให้ผู้ขอรับงานทราบล่วงหน้าบริษัทจัดเตรียมสถานที่ที่สำหรับเก็บรักษาโดยประสานงานกับผู้รับจ้างอันอื่น ๆ ที่เกี่ยวข้อง

2.3 เมื่อเครื่องอุปกรณ์ถึงหน่วยงาน ผู้รับจ้างต้องนำเอกสารการส่งของให้ผู้ขอรับงานเพื่อที่จะให้ตรวจสอบให้ถูกต้องตามที่ได้ออกมาระหว่าง

3. การจัดเตรียมสถานที่เก็บพัสดุ

ผู้รับจ้างต้องเป็นผู้จัดเตรียมสถานที่เก็บเครื่องวัสดุอุปกรณ์ต่าง ๆ ในบริเวณที่เหมาะสมกับวัสดุอุปกรณ์นั้น ๆ และรับรองความสามารถทำการตรวจสอบ เครื่องมืออุปกรณ์ที่ต้องมีการตรวจสอบ หลักฐานการตรวจสอบ หรือพัสดุอุปกรณ์ ที่เก็บ อยู่ในสถานที่ที่มีอยู่ที่ผู้รับจ้างที่มีคำสัญญาอยู่ในหน่วยงานผู้รับผิดชอบไม่ใช้ผู้รับผิดชอบให้ทำการขนส่งเครื่องชดเชยบริเวณสถานที่เก็บ

4. การเก็บรักษาเครื่องวัสดุและอุปกรณ์

ผู้รับจ้างต้องเก็บรักษาเครื่องวัสดุและอุปกรณ์ที่ได้รับเพื่อการติดตั้ง และที่ต้องมีแสงสว่าง เทียบเท่าในสถานที่เก็บรักษา ที่มีเครื่องวัสดุและอุปกรณ์ ที่เก็บผู้รับผิดชอบให้รักษาเครื่อง ซึ่งต้องมีแสงสว่าง ตามที่กฎหมาย เลิกอุปกรณ์หรือชั่ว_time จนกว่าจะได้ส่งมอบงานแล้ว
5. ตัวอย่าง วัสดุอุปกรณ์และการติดตั้ง

5.1 ผู้รับจ้างต้องจัดหาตัวอย่าง วัสดุอุปกรณ์ รวมทั้งเอกสารของผู้ผลิตที่แสดงรายละเอียดทางเทคนิค ขนาด และรูปแบบที่ใช้งานของ วัสดุอุปกรณ์ แต่ละชิ้นตามที่ผู้蟾งานต้องการ

5.2 ในการเมื่อผู้蟾งานมีความประสงค์ให้ผู้รับจ้างแสดงวิธีการติดตั้ง เพื่อเป็นตัวอย่างหรือความเหมาะสม แล้วแต่กรณี ผู้รับจ้างต้องแสดงการติดตั้ง ณ สถานที่ติดตั้งจริงตามที่ผู้蟾งานกำหนด เมื่อเรียบร้อยและการติดตั้งเสร็จสิ้นแล้ว ให้รับรองแล้วให้ถือเป็นมาตรฐานในการปฏิบัติต่อไป

6. การแก้ไข เปลี่ยนแปลงแบบ รายการ วัสดุและอุปกรณ์

6.1 การเปลี่ยนแปลงแบบ รายการ วัสดุและอุปกรณ์ ที่ไม่ไปจากข้อกำหนดและจริงใจได้ตามข้อผูกพัน ความจำเป็น หรือความเหมาะสมก็ได้ ผู้รับจ้างต้องแจ้งเป็นลายลักษณ์อักษรต่อเจ้าของโครงการ เพื่อขออนุมัติเป็นลายลักษณ์อักษร 15 วัน ก่อนดำเนินการจัดซื้อหรือทำสัญญาติดตั้ง

6.2 ในการกรณีที่แสดงกันเครื่องมือปั่นหรืออุปกรณ์ตามรายการที่ผู้蟾ออกแบบกำหนดไว้เกิดความไม่เหมาะสม หรือไม่ทำงานโดยถูกต้อง ผู้รับจ้างต้องไม่ใช้เพียงแต่ละเครื่องมือที่จะจ้างซื้อความเห็นชอบจากผู้蟾งานในการแก้ไข เปลี่ยนแปลงให้ถูกต้องตามความประสงค์ โดยเช็คและแสดงเหตุผล และหลักฐานจากบริษัทผู้ผลิต

6.3 คำร้องข้อเท็จจริงในกรณีที่ถูกกล่าวหาว่าผู้รับจ้างต้องเป็นผู้รับผิดชอบต่อคำร้องแล้ว

7. ขั้นตอน และเครื่องมือของวัสดุ อุปกรณ์

ผู้รับจ้างต้องจัดสรรค์ ป้ายชื่อ และเครื่องมือแสดงกิจกรรมของเครื่องมือและอุปกรณ์ต่างๆ ที่นำมามัดตั้งในโครงการ เพื่ออำนวยความสะดวกในการตรวจสอบและจำแนกชัด แล้วแต่รายละเอียดในบริเวณที่เปิดมีข้อขัดข้อง นาได้ จะต้องมีเครื่องมือที่เหมาะสมได้ง่าย

8. การป้องกันการบุกรุก

ข้อตกลงทั้งหมดต้อง <%content>% เข้าร่วมกับการป้องกันการบุกรุก หรือการทำสิ่งใดๆ ทำให้เกิดความเสียหายแก่เครื่องอุปกรณ์ และเ่คี่ยะกันต่างๆ ที่ผ่านการป้องกันการบุกรุกและการทำสิ่งใดๆ จากการป้องกันการบุกรุก ผู้รับจ้างต้องทำสิ่งดังกล่าวเพื่อป้องกันการบุกรุกจะต้องมีการป้องกันการบุกรุกในสายงาน
หมวดที่ 5
การทัศน, การป้องกันการสูญความ

1. ความต้องการทั่วไป

1.1 วัสดุภูมิทัศน์ทุกชนิด ต้องทำการวิเคราะห์การป้องกันการสูญความ และ/หรือ การทัศน์ตามที่ระบุไว้ใน
วิบัติภูมิทัศน์ ซึ่งเป็นการวิเคราะห์ที่แนะนำวิธีที่อาจมีวิธีที่ดีและเหมาะสมกับตามข้อแนะนังของผู้ผลิต
วัสดุ และ/หรือ สิ่งที่ใช้ในต่างๆ โดยได้รับการอนุมัติจากผู้จ้างงาน

1.2 การป้องกันการสูญความ และการทัศน์ต้องดำเนินการก่อนนำวัสดุภูมิทัศน์ๆ ซึ่งได้ถูกต้องตามวิธีที่ใช้
งาน เพื่อป้องกันปัญหาการเกิดวัสดุในภายหลัง เว้นแต่ผู้รับผู้จ้างงานจะพิจารณาตามความเหมาะสม

1.3 เมื่อได้ตัดสินวัสดุภูมิทัศน์ต่างๆ เรียบร้อยแล้ว หาทบทวนว่ามีการใช้ผลิตภัณฑ์ของฝ่ายมีงาน ผู้รับจ้างจังจึงต้องทำ
การจัดทำแผนให้ดีที่สุด

2. การเตรียมและทำความสะอาดภูมิทัศน์

2.1 พื้นเมืองที่เป็นเหล็กหรือโลหะที่มีส่วนผสมของเหล็ก ให้ใช้เครื่องขัดสนิมตามระยะต่อระยะและ
โลหะที่ต่างๆ จากนั้นใช้แปรปรวนหรือกระดาษกราฟมีภูมิทัศน์ในประเทศกับสมุนไพร หรือยาใช้ฟัน
ทราบเพื่อกำจัดสนิมและเศษรูปเปลือกออกจากเหล็กใช้กระดาษกราฟมีภูมิทัศน์ในประเทศกับสมุนไพร หรือยาใช้ฟัน
ทราบเพื่อกำจัดสนิมและเศษรูปเปลือกออกจากเหล็กใช้กระดาษกราฟมีภูมิทัศน์ในประเทศกับสมุนไพร หรือยาใช้ฟัน
ทราบเพื่อกำจัดสนิมและเศษรูปเปลือกออกจากเหล็กใช้กระดาษกราฟมีภูมิทัศน์ในประเทศกับสมุนไพร หรือยาใช้ฟัน
ทราบเพื่อกำจัดสนิมและเศษรูปเปลือกออกจากเหล็กใช้กระดาษกราฟมีภูมิทัศน์ในประเทศกับสมุนไพร หรือยาใช้ฟัน

2.2 พื้นเมืองที่เป็นเหล็กดำ (BLACK STEEL) โดยเฉพาะที่อยู่ในบริเวณที่มีความชื้นสูง เช่น ท่อ
คอนกรีตและข้อเดียวที่ลึกสูงสำหรับและกันคอนกรีตของลาดทราย เบื้องต้น ให้ใช้เครื่องร่อน
ร่อนสีดำด้วยวิธีพ่นระเบิด (SANDBLAST) แล้วจึงทำการวิเคราะห์การป้องกันภูมิทัศน์ที่กำหนด โดย
รายละเอียดในการวิเคราะห์ขั้นตอนให้ปฏิบัติตามคำแนะนำของผู้ผลิตสินค้าที่เรียกว่า

2.3 พื้นเมืองที่ไม่มีส่วนผสมของเหล็ก ให้ทำการตรวจสอบโดยใช้กระดาษกราฟมีภูมิทัศน์ (ท่านำเครื่องขัด
ร้อนประดับโดยผ่านออก) แล้วใช้ขั้นตอนที่แล้ว

2.4 พื้นเมืองสีแดงและเหล็กที่เกิดขึ้นภายใน ให้ใช้เข้าไปด้วยเหตุที่อาจจัดบูรับได้และผู้พิจารณา

2.5 ผู้ให้จ้างจะต้อง รวมถึงผลิตสีที่ใช้ในการฟอกน้ำขั้นตอนที่ต้องการความ
สะอาด

3. การทดสอบ

3.1 การทำหรือฟอกสีแต่ละขั้น ต้องให้สีทางการหรือพายไปแล้วแห้งให้ทัน

3.2 สิ่งที่ใช้ทาง หรือพาย ประกอบด้วย 1 ส่วน คือ
ก. สิ่งที่ใช้ฟอกสีสำหรับสีที่กำหนดและอนุญาตให้ใช้
ข. สิ่งที่ใช้สำหรับสีที่กำหนดขั้นสุดท้าย เพื่อให้มีการแสดงประสิทธิภาพดีที่สุดที่ใช้
ชื่ออยู่กับสภาวะแวดล้อม

[ลายเซ็น]
3.3 ประเภทหรือชนิดของสีที่ใช้ ขึ้นกับมิ่งงานและสถานะแวดล้อม โดยมีรายละเอียดดังตารางต่อไปนี้:

<table>
<thead>
<tr>
<th>ชนิดของผิวที่ดู</th>
<th>บริเวณที่ทา</th>
<th>บริเวณที่ใช้ความหนาสูง</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK STEEL</td>
<td>ขั้นที่ 1 RED LEAD PRIMER ขั้นที่ 2 RED LEAD PRIMER ขั้นที่ 3 สีทับทิม ALKYD ขั้นที่ 4 สีทับทิม ALKYD</td>
<td>ขั้นที่ 1 EPOXY RED LEAD PRIMER ขั้นที่ 2 EPOXY RED LEAD PRIMER ขั้นที่ 3 สีทับทิม EPOXY ขั้นที่ 4 สีทับทิม EPOXY</td>
</tr>
<tr>
<td>GALVANIZED STEEL</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 ZINC CHROMATE PRIMER ขั้นที่ 3 สีทับทิม ALKYD ขั้นที่ 4 สีทับทิม ALKYD</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 EPOXY RED LEAD PRIMER ขั้นที่ 3 สีทับทิม EPOXY ขั้นที่ 4 สีทับทิม EPOXY</td>
</tr>
<tr>
<td>STAINLESS STEEL</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม ALKYD</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม EPOXY</td>
</tr>
<tr>
<td>ALUMINIUM</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม ALKYD</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม EPOXY</td>
</tr>
<tr>
<td>LIGHT ALLOY</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม ALKYD</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม EPOXY</td>
</tr>
<tr>
<td>COPPER</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม ALKYD</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม ALKYD ขั้นที่ 3 สีทับทิม EPOXY</td>
</tr>
<tr>
<td>PVC</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม CHLORINATED RUBBER ขั้นที่ 3 สีทับทิม CHLORINATED RUBBER</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม CHLORINATED RUBBER ขั้นที่ 3 สีทับทิม CHLORINATED RUBBER</td>
</tr>
<tr>
<td>PLASTIC</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม CHLORINATED RUBBER ขั้นที่ 3 สีทับทิม CHLORINATED RUBBER</td>
<td>ขั้นที่ 1 WASH PRIMER ขั้นที่ 2 สีทับทิม CHLORINATED RUBBER ขั้นที่ 3 สีทับทิม CHLORINATED RUBBER</td>
</tr>
<tr>
<td>CAST IRON</td>
<td>ขั้นที่ 1 COAL TAR EPOXY ขั้นที่ 2 COAL TAR EPOXY</td>
<td>ขั้นที่ 1 COAL TAR EPOXY ขั้นที่ 2 COAL TAR EPOXY</td>
</tr>
</tbody>
</table>

3.4 วัสดุที่เป็นโลหะ และใช้งานผู้ยืน ให้เคลือบด้วย COAL TAR EPOXY อย่างน้อย 2 ขั้น
3.5 ในกรณีที่มีการข้อม หรือ ที่พื้นผิว อันเป็นผลมาจากมิ่งงาน การตัด-เจาะ และการทำเกลียว ให้ใช้ สีเคลือบพร้อมกับ ZINC RICH PRIMER ก่อนรองด้วยเหล็ก
3.6 สภาพของพื้นผิวแวดล้อมที่อาจเกิดขึ้น มีความถี่ที่สูงกว่า 400 % มีคุณสมบัติในการยืดกล้าะ ระหว่างขั้นเคลือบมีความดี ไม่หลุดร่อนหรือแตกกลาย หรือเปียกตัวหรือซึม ในระบบที่ ต้องมีสูตรรักษาไว้ cloned และเชื่อมได้ดี
หมวดที่ 6
รหัส สัญลักษณ์ และ ป้ายชื่อ

1. ความต้องการทั่วไป

ผู้รับจ้างต้องจัดทำ รหัส สัญลักษณ์ ตลอดจนป้ายชื่อ บน วัสดุ-อุปกรณ์ และ ท่อ-ทางต่างๆ ในระบบที่รับผิดชอบ เพื่อความสะดวกในการตรวจสอบปรุงรูปในภายหลัง ซึ่งต้องจัดทำให้เรียบร้อยสมบูรณ์ก่อนการส่งมอบงาน

2. รหัส

2.1 ต้องมีให้กำแพงไว้เป็นอย่างยิ่ง การทำให้ต่างๆ ทุกระบบ ต้องหา หรือ พบ สัญลักษณ์ ตามรหัสที่กำหนดโดยการตั้งแนว ยกเว้น ที่อยู่ต่างๆที่มีความร้อน และ/หรือ วัสดุที่มี

2.2 ท่อร่วมต่างๆ ทุกระบบที่ต้องมีการรู้จักความร้อน และ/หรือ ห้องต่างๆ ให้ทำหรือพบ ทางสิ่งที่ส่งเสียงอย่างน้อย 2 ชั้น ต้องการคำนวณการรู้จัก ยกเว้น ที่ทำให้ผ่านการชุมมีป้องกันการรู้จักแล้วเป็นอย่างดี

3. สัญลักษณ์

3.1 ทำน้ำทุกชนิด และ/หรือ ทุกระบบ ต้องมีสัญลักษณ์ให้ชัดเจนถูกต้อง และถูกต้องตามที่มี

3.2 ท่อร่วมสายไฟฟ้า ตลอดจน ทางวางสายไฟฟ้าต่างๆ ให้ทำผ่านสัญลักษณ์สัญลักษณ์

4. ตำแหน่งของ รหัส และ สัญลักษณ์

4.1 รหัสที่เป็นแบบย่อ และ สัญลักษณ์ ซึ่งโดยทั่วไปจะอยู่ตู้ ต้องอยู่ในตำแหน่งที่สามารถมองเห็นได้ ดังนี้

4.2 รหัส และ สัญลักษณ์ ที่ต้อง ซึ่งแสดงไว้ในท่อต่างๆ ให้ต้องมีตำแหน่งอย่างน้อยดังนี้

ก. ทุกๆ ระยะ ไม่น้อยกว่า 6 เมตร (20 ฟุต) ในแนวตรง
ข. ทุกๆ ตำแหน่งที่ติดกับประตูนำ (VALVE) ที่ตั้งตำแหน่งต่างๆ

ค. ทุกๆ ตำแหน่งที่มีการเปลี่ยนทาง และ/หรือ มีท่อแยก

ง. ทุกตำแหน่งที่มีการตัดต่อ ผ่านทางอุปกรณ์ และ/หรือ ส่วน

จ. ประตูของปิดเปิดบริการ (SERVICE DOOR AND SERVICE PANEL)

4.3 สำหรับห้องวิทยาลัย และ/หรือ รางวัลสายไฟฟ้า และสายสัญญาณใดๆ ให้มีแผนที่สัญลักษณ์ และ สัญลักษณ์ตามตำแหน่งอย่างน้อยดังนี้.

ก. ทุกๆ ระยะ ไม่น้อยกว่า 3 เมตร
ข. บริเวณต่อส่ง ต่อ-แยก สาย (PULL BOX AND JUNCTION BOX)
ค. ภายในกล่อง ต่อ-แยก สาย ให้มีเฉพาะรหัส
5. ขนาดของแบบรับและสัญญาณ

ขนาดความกว้างของแบบรับและสัญญาณ ความยาวของลูกศรสัญญาณ ความหนาของเส้นอุ้มกรร และความสูงของอักษรสัญญาณ ต้องเป็นไปตามกำหนดดังนี้-

<table>
<thead>
<tr>
<th>ขนาดเส้นผ่าศูนย์กลางท่อ และความยาวยาวของสายไฟฟ้า</th>
<th>ความกว้างแบบรับ</th>
<th>ความยาวอุ้มกรร และความหนาเส้นอุ้มกรร</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 มม (3/4") – 32 มม (1")</td>
<td>200 มม (8")</td>
<td>15 มม (1/2")</td>
</tr>
<tr>
<td>40 มม (1") – 50 มม (2")</td>
<td>200 มม (8")</td>
<td>20 มม (3/4")</td>
</tr>
<tr>
<td>65 มม (2") – 150 มม (6")</td>
<td>300 มม (12")</td>
<td>32 มม (1")</td>
</tr>
<tr>
<td>200 มม (8") – 250 มม (10")</td>
<td>300 มม (12")</td>
<td>65 มม (2")</td>
</tr>
<tr>
<td>300 มม (12") – มากกว่า</td>
<td>500 มม (20")</td>
<td>90 มม (3")</td>
</tr>
</tbody>
</table>

6. สีและอักษรสัญญาณ

สีที่ใช้ในการรับและสัญญาณต่างๆ รวมถึงอักษรสัญญาณที่ใช้ในระบบต่างๆ ให้เป็นไปตามกำหนดดังนี้-

<table>
<thead>
<tr>
<th>รายการ</th>
<th>ตัวอักษร</th>
<th>สัญญาณ</th>
<th>รหัสสี</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILLED WATER SUPPLY</td>
<td>CHS</td>
<td>ขาว</td>
<td>เขียว</td>
</tr>
<tr>
<td>CHILLED WATER RETURN</td>
<td>CHR</td>
<td>ขาว</td>
<td>ฟ้า</td>
</tr>
<tr>
<td>CONDENSER WATER SUPPLY</td>
<td>CDS</td>
<td>ขาว</td>
<td>เหลือง</td>
</tr>
<tr>
<td>CONDENSER WATER RETURN</td>
<td>CDR</td>
<td>ขาว</td>
<td>ส้ม</td>
</tr>
<tr>
<td>COLD WATER SUPPLY</td>
<td>CWS</td>
<td>ขาว</td>
<td>น้ำเงิน</td>
</tr>
<tr>
<td>COLD WATER SUPPLY TO WATER STORAGE TANK</td>
<td>CWT</td>
<td>ขาว</td>
<td>น้ำเงิน</td>
</tr>
<tr>
<td>ท่อ/ราง สายไฟฟ้ากั้นป้องกัน</td>
<td>N</td>
<td>สีดำ</td>
<td>แดง</td>
</tr>
<tr>
<td>ท่อ/ราง สายไฟฟ้าควบคุม / ไฟฟ้ากั้นป้องกัน สำหรับเป็นสูบกลา</td>
<td>AC</td>
<td>แดง</td>
<td>ฟ้า</td>
</tr>
<tr>
<td>ท่อ/ราง สายไฟฟ้าควบคุม / ไฟฟ้ากั้นป้องกัน สำหรับวาล์วกลา</td>
<td>SAN</td>
<td>แดง</td>
<td>ฟ้า</td>
</tr>
<tr>
<td>BUSBAR และสายไฟฟ้าเพลช A (R)</td>
<td>A</td>
<td>–</td>
<td>แดง</td>
</tr>
<tr>
<td>BUSBAR และสายไฟฟ้าเพลช B (S)</td>
<td>B</td>
<td>–</td>
<td>เหลือง</td>
</tr>
<tr>
<td>BUSBAR และสายไฟฟ้าเพลช C (T)</td>
<td>C</td>
<td>–</td>
<td>น้ำเงิน</td>
</tr>
<tr>
<td>รายละเอียด</td>
<td>ตัวอักษร</td>
<td>สัญญาลักษณะ</td>
<td>หัวข้อ</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>BUSBAR และสายไฟพาเสายุคปัจจุบัน</td>
<td>N</td>
<td>-</td>
<td>ขาว</td>
</tr>
<tr>
<td>BUSBAR และสายไฟพาสายดิน</td>
<td>GR</td>
<td>-</td>
<td>เชียร์</td>
</tr>
</tbody>
</table>

กรณีที่ยังไม่กำหนดไว้ในรายการข้างต้น ให้ผู้รับจ้างเสนอขอความเห็นชอบจากผู้คุมงาน

พื้นที่นอกเหนือจากที่กล่าวมาข้างต้น การกำหนดให้เช่นกับข้อต่อไปนี้ของผู้คุมงาน
หมวดที่ 7
เครื่องทำน้ำเย็นแบบ SCREW CHILLER
ชีพิดวยความร้อนด้วยน้ำ (WATER COOLED)

1. ความต้องการทั่วไป

1.1 เครื่องทำน้ำเย็น จัดหาโดยผู้บริจาค โดยจะต้องส่งมอบให้เครื่องของโครงการจะถูกแทนที่เครื่องของแต่ละเครื่อง โดยผู้บริจาคจะต้องจัดเตรียมฐานความคิดเพื่อเตรียมหลักเกณฑ์ได้ระดับซีซีที่ความสูงระดับกัน FINISHED FLOOR ในระดับที่สามารถติดตั้งเครื่องทำน้ำเย็นให้ต่อข้ามกับระบบทำน้ำได้อย่างสมบูรณ์

1.2 เครื่องทำน้ำเย็นที่ใช้ในโครงการนี้ ประกอบด้วย เครื่องทำน้ำเย็นแบบ WATER COOLED CHILLER มีขนาดตามที่กำหนดในเอกสารทางกับหอด

1.4 ผู้บริจาคต้องเป็นผู้ติดตั้งระบบทำน้ำเย็นๆ เข้าเครื่องทำน้ำเย็น พร้อมอุปกรณ์ที่เกี่ยวกับการทำน้ำในเอกสารทางกับหอด รวมถึงการติดตั้งระบบไฟฟ้าตัวถัง และไฟฟ้าตามที่กำหนดของเครื่องทำน้ำเย็นทั้ง 4 ชุด

1.5 ผู้บริจาคต้องจัดทำ Technical Selection แสดงรายละเอียดการทำงานของเครื่องทำน้ำเย็นที่มีการต่างๆ คือตั้งแต่ 100%, 90%, 80% ... จนถึงสุดท้ายที่เครื่องทำน้ำเย็นยังสามารถทำงานได้เป็นปกติโดยมีอุณหภูมิห้องอยู่ที่เครื่องทำน้ำเย็นสามารถทำงานได้เป็นปกติ โดยมีอุณหภูมิห้องอยู่ที่เครื่องทำน้ำเย็น 80%F

1.6 ผู้รับจ้างจะต้องจัดส่งเอกสารต่อไปนี้ให้ผู้รับจ้างและวิศวกรก่อนดำเนินการ Start Up & Commissioning

1.1.1 แบบติดตั้งระบบเครื่องทำน้ำเย็น

1.1.2 แบบระบบไฟฟ้าสราวุปเครื่องทำน้ำเย็นและระบบควบคุม

1.1.3 ขั้นตอนและวิธีการดำเนินการ Start Up & Commissioning

1.1.4 คู่มือการใช้งานและการบำรุงรักษาระบบ (Operation Manual)

t าใช้เพื่อที่จะช่วยในการ Start Up เชน ค่ากระแสไฟฟ้า ค่าน้ำ และการจัดทำรายงานต่างๆ เป็นต้น

ให้เป็นการของผู้รับจ้างของโครงการ

1.7 การรับประกัน รายการวิศวกรจะเป็นผู้รับประกัน (โดยไม่คิดค่าซ่อม และค่าแรง) เป็นระยะเวลา 2 ปี หรือกว่าจากวันที่ผู้รับจ้างยอมรับแบบเอกสารหรือเรียบรองของงาน (Certificate of Completion) โดยจะต้องยอมรับประกันเป็นเวลาหลักสูตรนักศึกษาผู้รับจ้าง หรือ ตัวแทนเจ้าหน้าที่จากผู้ผลิตโดยตรงซึ่งวัสดุอุปกรณ์ดังกล่าวนำจะประกอบไปด้วยรายการดังต่อไปนี้

1.14.1 ชีพิดวยคอมพิวเตอร์และชีพิดวยคอมพิวเตอร์เงินอุปกรณ์ควบคุมทำความเย็น

1.14.3 ระบบหลอดแย้ม

1.14.4 Sensor และมาตรฐานต่างๆ ที่ติดตั้งมาจากโรงงานผู้ผลิต

1.14.5 ชีพิดวย Cooler หรือ Condenser

1.14.6 ชีพิดวย Starter

1.14.7 อุปกรณ์เสริมอื่นๆ (ถ้ามี)

1.8 Spare Part (อุปกรณ์สำรองก็ไม่เปลี่ยนตามช่วงระยะเวลาใช้งานที่ผู้ผลิตกำหนด)

รายการ Spare Part ที่ผู้รับจ้างจะต้องจัดมอบให้ทางโครงการ พร้อมกับการส่งมอบงานต่างๆ ที่ผู้รับจ้างจะต้องจัดทำรายรายการ รายการ Spare Part ที่ระบุรายละเอียดเป็นต้นไม่ได้ยกเว้น ดังนี้
- ซื้ออีกห่อ ซื้อรุ่น ที่ติดตั้งไว้ในปัจจุบัน
- ซื้ออีกห่อ ซื้อรุ่น ที่สามารถเปลี่ยนแปลงใช้ทดแทนได้
- ซื้ออุปกรณ์เสริมเหมือน หรือสูตรสิ่งที่อยู่ในรายการเครื่องมือที่ติดตั้ง

โดยรายการ Spare Part ที่ผู้รับจำเป็นต้องเสนอ จำนวน และราคาต่อหน่วย เนื่องจากจะต้องมีการเปลี่ยนแปลงตามยี่ห้อก๊าหนดของผู้ผลิตภายในช่วงเวลา 2 ปี จะต้องประกอบด้วยรายการอย่างน้อยดังนี้
- Oil Filter
- Refrigerant drier
- อื่นๆ ตามที่ผู้ผลิตแนะนำให้เปลี่ยนภายในเวลาช่วงต่ำสุด (โดยไม่ต้องทำการเปลี่ยนอุปกรณ์)

1.9 การบริการรักษา ผู้รับจำเป็นต้องส่งรายการรักษา ให้เข้ามาให้บริการเป็นระยะเวลา 2 ปี (ห้าหมื่นอย่างน้อย 8 ครั้ง ในเวลา 2 ปี หรือสิ้นสุดงวดก่อนที่จะส่งข้อมูลเข้าบริการส่วนอื่นตามที่ผู้ผลิตก๊าหนด) จะต้องประกอบด้วยรายการอย่างน้อยดังนี้
ก. ตรวจสอบและทำความสะอาดที่ความยืดหยุ่น 2 เท่า หรือตามยี่ห้อก๊าหนดของผู้ผลิต
ข. ตรวจสอบและเปลี่ยน Refrigerant drier ทุกๆ 6 เท่าน หรือตามยี่ห้อก๊าหนดของผู้ผลิต
ค. ตรวจสอบและเปลี่ยนหม้อน้ำที่ความยืดหยุ่น 2 เท่า หรือตามยี่ห้อก๊าหนดของผู้ผลิต
ง. ตรวจสอบและเปลี่ยน Oil Filter ทุกๆ 6 เท่าน หรือตามยี่ห้อก๊าหนดของผู้ผลิต
จ. ซ่อมที่ความสะอาด Cooler & Condenser Tube ทุกๆ 12 เท่าน หรือตามยี่ห้อก๊าหนดของผู้ผลิต
ฉ. ตรวจสอบ ครบถ้วน ครบถ้วนทุกการวิเคราะห์และตรวจสอบที่การติดตั้งทุกๆการเหมือนกันทั้งหมด Start Up & Commissioning (ข้อ 1.4.9) ให้โครงการต่อไป 12 เท่าน
ช. ตรวจสอบอุปกรณ์ Starter and Control ทุกๆ 3 เท่าน

1.10 ในช่วงระยะเวลาการตรวจรับ และส่งมอบสินค้านั้นผู้จ้างยินยอมผู้รับจ้างหรือผู้ซื้อจะต้องรับใช้สินค้านั้นที่เจ้าหน้าที่ส่งมอบสินค้าให้แก่ผู้ซื้อ หรือผู้รับจ้าง หรือผู้ซื้อหรือผู้รับจ้างจะต้องรับใช้สินค้านั้นเปลี่ยนแปลงที่ผู้ผลิตจะต้องนั้น ผู้ซื้อหรือผู้รับจ้างจะต้องผู้รับจ้างจะต้องส่งมอบสินค้านั้นให้แก่ผู้ซื้อหรือผู้รับจ้างห้ามมีการเปลี่ยนแปลงสินค้านั้นให้แก่ผู้รับจ้างหรือผู้ซื้อ

1.11 ผู้รับจ้างหรือผู้ซื้อจะต้องจัดส่งข้อมูลผู้ซื้อหรือผู้จำหน่ายให้การซื้อและขายการติดตั้งการเปลี่ยนแปลงการติดตั้งการบริการหรือการซื้อและขายการติดตั้งการบริการหรือการซื้อและขายการติดตั้งการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื้อและขายการบริการหรือการซื่
2. คุณลักษณะ

2.1 เครื่องทำน้ำเย็นต้องเป็น Water Screw Chiller ออกแบบสำหรับติดตั้งภายในอาคารทุกขนาดความร้อนด้วย

- ใช้กับระบบทำน้ำเย็น R-134a ประกอบด้วยอุปกรณ์ต่าง ๆ เช่น Compressor, Evaporator, Condenser, Electronic Expansion Valve, และอุปกรณ์อื่น ๆ ที่ติดตั้งอยู่ในเครื่องโดยมีชุดเดียวกัน

- ที่ติดตั้งอยู่ในชุด Isolator สำหรับติดตั้งฐานเครื่องตามความชักทางของโรงงานผู้ผลิต (Chiller) ตามมาตรฐานจากมาตรฐานสมาคม (ARI Standard 550 / 590 สำหรับ) ความสามารถทำความเย็นคือไม่เกิน 0.85 kw/ton สำหรับเครื่องทำน้ำเย็นขนาดไม่ต่ำกว่า 150 ตัน และไม่เกิน 0.61 kw/ton สำหรับเครื่องทำน้ำเย็นขนาดไม่ต่ำกว่า 300 ตัน ที่ อุณหภูมิใน 45/55 F Cooler, และ 90/100 Condenser

2.2 เครื่องทำน้ำเย็นต้องการทดสอบจากโรงงานผู้ผลิต เพื่อให้ยืนความสามารถในการทำความเย็นและประสิทธิภาพเป็นไปตามข้อกำหนดที่เสนอ โดยการทำทดสอบเป็นไปตามมาตรฐานอเมริกา ARI STANDARD และมีการทดสอบดังต่อไปนี้

- ทดสอบ witness test โดยผู้แทนจากหน่วยงานของผู้ซื้อรวมเป็นพยานในการทดสอบเครื่องที่ full load 100% สำหรับเครื่องขนาดไม่ต่ำกว่า 300 ตัน จำนวน 1 ชุด

- ทดสอบแบบ performance test (non-witness) โดยทางโรงงานทำการทดสอบเครื่องมาตรฐานเดียวกันและส่งผลทดสอบให้กับทางโรงงาน (โดยไม่ต้องร่วมเป็นพยาน) สำหรับเครื่องขนาดไม่ต่ำกว่า 300 ตัน จำนวน 2 ชุด และขนาดไม่ต่ำกว่า 150 ตัน จำนวน 1 ชุด ที่ full load 100%

2.3 Compressor เป็นแบบ Single Compressor Screw Type มีชุดขับเคลื่อนไม่เกิน 3 ชิ้น และเป็นแบบ Semi hermetic (Serviceable) ขับเคลื่อนตรง (Direct Drive) และจะต้องเป็นแบบเดียวกับเครื่องทำน้ำเย็น เครื่องให้เลือกใช้กับน้ำยา R-134a นอกจากนี้จะต้องมีอุปกรณ์ดักน้ำมัน (Oil Separator) เป็นตัวคัดล้างน้ำมัน เพื่อให้ไม่ส่งถึงเครื่องด้วยอุปกรณ์ Direct Drive มี

- ความเรื่อยไปไม่เกิน 3,000 รอบต่อนาที่ การควบคุมอุณหภูมิในการทำความเย็นของคอมพลร์ซเจอร์ใช้ อุปกรณ์ Slide Valve เป็นตัวควบคุม นอกจากนี้จะต้องมีการเพิ่มประสิทธิภาพของ Refrigerant Cycle เป็นแบบ Full Economizer Refrigerant Cycle การควบคุมความร้อนของคอมพลร์ซเจอร์ใช้ Liquid หรือ Suction Gas Cooled ตัวบ่อยเป็นชนิด Hermetically Sealed 3-Pole หรือ 2-Pole, Squirrel cage Induction Motor

2.4 Evaporator และ Condenser เป็นชนิด Tube in shell heat exchanger ที่มีด้านหน้า Closed cell foamed plastic ความทน 25 mm. (1 นิ้ว) ที่บีบออกจากน้ำ ทว่าถูกผนังของ Shell รวมกับผนังของอุปกรณ์ที่ เปลี่ยนโดยออกแบบให้มีค่า Designated Working Pressure ไม่ต่ำกว่า 150 ปอนด์ต่อตารางนิ้ว ที่ด้าน Water side (SHELL) และ 200 ปอนด์ต่อตารางนิ้ว ที่ด้าน Refrigerant Side

2.5 อุปกรณ์ผลิตความเย็นน้ำจากความตัน Condenser ไป Evaporator ต้องใช้เป็นแบบ Electronic Expansion Valve (EXV.)

2.6 อุปกรณ์ประกอบเครื่องทำน้ำเย็นแต่ละชุดจะต้องประกอบด้วยอุปกรณ์ต่าง ๆ ตามมาตรฐานของ

- ระบบควบคุมการการทำงานของคอมพลร์ซเจอร์ เป็นแบบ Unit Mounted STAR-Delta CLOSED TRANSITION STARTER เป็นไปตามข้อกำหนดของโรงงานผู้ผลิตเครื่องทำน้ำเย็น โดยต้องผ่านการทดสอบตามมาตรฐานสากลแล้ว
- การควบคุมสมรรถนะของเครื่อง ต้องเป็นแบบ MICROPROCESSOR CONTROL ทำงานโดยอัตโนมัติ มีการควบคุมอุณหภูมิของน้ำเย็นที่ออกจากเครื่องใส่แน่นอน และป้องกันไม่ให้คอมเพรสเซอร์ทำงานเกินความจำเป็น ณ กรณีที่ภาวะน้อย (UNLOAD) อุปกรณ์ควบคุมจะต้องสามารถลดการทำงานของเครื่องทำน้ำเย็นได้อย่างน้อย 100% ถึง 25% ภายใต้สภาวะ CONSTANT ENTERING CONDENSER TEMPERATURE โดยไม่เกิด SURGE และไม่ใช่ HOT GAS BYPASS.

- อุปกรณ์ควบคุมทุกอย่างที่มีการปลอดภัย เป็นแบบใช้ระบบไฟฟ้าหรืออินพุทของเครื่องควบคุมการทำงานโดยอัตโนมัติทั้งหมดและไม่มีผลกระทบ (FULLY AUTOMATIC AND FAILSAFE) ทำให้เครื่องหยุดได้อย่างทันที (SAFETY SHUT-DOWN) ที่มีประสิทธิภาพ

- แหล่งควบคุมการทำงานของตัวเครื่อง (CONTROL PANEL) จะต้องประกอบด้วยตัวควบคุม ต้องเป็นรูปแบบของเครื่องป้องกันและจะต้องประกอบด้วยอุปกรณ์ควบคุมหลักนี้เป็นอย่างน้อย เช่น สวิตช์ตัดคอนแทกซ์ไม่มี สตาร์ทเตอร์ อุปกรณ์ควบคุมต่างๆ เช่น CHILLED WATER TEMPERATURE CONTROL, CHILLED WATER AND CONDENSER WATER TEMPERATURE MONITORING, MOTOR CURRENT LIMITING CONTROLS, SYSTEM CYCLING CONTROLS, SYSTEM SHUTDOWN CONTROLS, EVAPORATOR LOW REFRIGERANT TEMPERATURE CUTOUT, CONDENSER HIGH REFRIGERANT PRESSURE CUTOUT, DIFFERENTIAL OIL PRESSURE CONTROLLER, LOW WATER TEMPERATURE CUTOUT, WATER TEMPERATURE CONTROLLER, MOTOR WINDING TEMPERATURE CONTROL.

- แหล่งควบคุมต้องสามารถแสดงผลเป็นแบบ CLEAR LANGUAGE DISPLAY โดยเป็นแบบ MULTI LANGUAGES ซึ่งสามารถแสดงผลอย่างน้อยเป็นภาษาอังกฤษ เพื่อความสะดวกและง่ายต่อการใช้งาน
หมวดที่ 8
หน่วยที่ 8 (COOLING TOWER)

1. ความต้องการทั่วไป

1.1 ให้จัดหาและติดตั้งห้องฟักน้ำตามมาตรฐานความสามารถ ระบายความร้อนและจำนวนที่กำหนดในแบบ
รวมทั้งอุปกรณ์ ประกอบด้วย ๆ ตามที่ระบุไว้ในรายละเอียดต่อไปนี้ และที่จำเป็นสำหรับการใช้งานได้
อย่างสมบูรณ์

1.2 ห้องน้ำจะต้องเป็นชนิดที่เหมาะสมสำหรับการผลิตและใช้งานกลางแจ้ง การประกอบชุด
ห้องน้ำสามารถนำอุปกรณ์ ต่าง ๆ มาประกอบเช่น ผน สถานที่ติดตั้งได้ ซึ่งส่วนที่ถูกตรวจสอบจาก
ตัวรูดเอกซ์ ต้องมีสีเทาสีเดิมไม่ต้องใช้สำหรับพิมพ์ลงในกระดาษพิมพ์ระบุที่ ไม่อนุญาตให้ทำการซ่อมแซมส่วนที่
ตัวรูดเอกซ์

1.3 ห้องน้ำต้องมีคุณสมบัติสามารถ CTI (COOLING TOWER INSTITUTE), USA และต้องได้รับการ
รับรองมาตรฐานจาก CTI (CTI CERTIFICATE)

1.4 ห้องน้ำเป็นแบบ CROSS FLOW, INDUCED DRAFT VERTICAL DISCHARGE แบบ
LOW - NOISE มี COMPACTED FILM TYPE FILL เป็น BASIC HEAT TRANSFER SURFACE

2. วัสดุและโครงสร้าง

2.1 ตัวกลม (CASING) จะต้องทำด้วยวัสดุ FRP (FIBERGLASS REINFORCED POLYESTER) ที่มี
ความทนทาน สามารถทนต่อแรงกระแทกและทนต่อการกระแทกได้

2.2 ฐานตั้งและโครงสร้างห้องน้ำ ท่อหรือเครื่องอื่น ๆ โครงสร้างตัวกลม (FRAMEWORKS) จะต้องทำด้วย
HOT DIP GALVANIZED STEEL ที่มีความทนทาน ฐานตั้งหรือโครงสร้างห้องน้ำให้เป็นไปตาม
คำแนะนำของผู้ผลิต ผู้รับจ้างต้องทำการตรวจสอบระดับ และแนวทางการเพิ่มท่อเข้าและออก ใน
ลักษณะที่เหมาะสมให้กับ AIR LOCK ภายในท่อเพื่อเป็นช่องหลุดที่ใช้ในการทำการระบายความร้อน
สำหรับการติดตั้งห้องน้ำ

2.3 ภาชนะน้ำเย็น (COLD WATER BASIN) ทำด้วย FRP, (FIBERGLASS REINFORCED
POLYESTER) ที่มีความทนทาน _Tool สามารถต่อความจุมากพอที่จะไม่ทำให้พื้นผิวอยู่ดูดความร้อนไป
ในขณะใช้งาน

2.4 ภาชนะน้ำร้อน (HOT WATER BASIN) ทำด้วย FRP, (FIBERGLASS REINFORCED POLYESTER)
ที่มีความทนทาน .Tool สามารถต่อความจุมากพอที่จะไม่ทำให้พื้นผิวอยู่ดูดความร้อนไป
การตั้งท่อ
ทางเข้าของน้ำร้อนจะต้องใช้เป็นแบบหน้าแปลง

2.5 FILL ทำด้วย RIGID PVC โดยสามารถทำให้ต่อเร็วที่สุดอุณหภูมิไม่เกิน
55 องศา สามารถทำที่ความสะอาดได้ง่าย ส่วนของ FILL จะต้องเป็นลักษณะให้ห้องไฟฟ้าอยู่ได้อย่าง
ต่อเนื่อง เพื่อประสิทธิภาพในการระบายความร้อน มี DRIFT ELIMINATOR เป็นชิ้นเดียวกับ
FILL DRIFT ELIMINATOR เป็นชนิดติดตั้งต่อกับ FILL ต้องออกแบบให้มีการดูด เสียหาย
(DRIFT LOSS) ไม่เกิน 0.005 % OF RATED FLOW และจะต้องทำการทดสอบจากสถานที่
น่าเชื่อถือ
2.6 พัดลมเป็นชนิด AXIAL FAN โดยมีระดับเสียงไม่เกิน 70 dBA ที่ระยะ 2 เมตร ด้านบนของห้องน้ำ ต้องมีการถ่วงยงหนักที่เป็นกันโยชน์พัดลม (FAN GUARD) ทำด้วย HOT DIP GALVANIZED STEEL

2.7 มอเตอร์ที่ใช้กับพัดลมเป็น INDUCTION MOTOR ชนิด TOTALLY ENCLOSED FAN COOLED (TEFC), IP 55, CLASS F INSULATION, 1,450 รอบต่อนาที หรือต่ำกว่า ใช้กับสภาพอากาศภายนอกได้เป็นอย่างดี มอเตอร์จะต้องใช้กับระบบไฟฟ้าแบบ 380 โวลต์, 50 เซ็ท ต่อพักผสม มอเตอร์ย่านหนัก (V-BELT) และจะต้องสามารถถอดเปลี่ยนหรือตรวจสอบได้โดยง่าย

2.8 ลุ่มน้ำและอุปกรณ์ต่างๆ เช่น INLET, OUTLET CONNECTION, DRAIN, OVERFLOW, MAKE UP WATER INLET WITH FLOAT VALVE, MANUAL QUICK FILL MAKE UP WATER, SUCTION STRAINER, INTERIOR WALKWAY, LADDER, เป็นต้น จะต้องมีการจัดวางจากโรงแรมผู้ผลิต และอุปกรณ์ต้องมีการจัดวางวัสดุที่ทนต่อการกัดกร่อน และ BOLTS & NUTS จะต้องทำด้วยวัสดุ STAINLESS STEEL 304

2.9 COLLECTION BASIN เป็น CONCRETE SUMP รวมถึงเป็น F.R.P. และต้องมีแสง COMMON กับ BASIN ของ COOLING TOWER ทุกชุดด้วย

2.10 รายละเอียดอื่นๆ ดูได้จาก SCHEDULE OF COOLING TOWER และ DETAIL OF INSTALLATION ไม่ระบุ

3. ระบบควบคุมคุณภาพน้ำเหลืองผ่าน

3.1 ระบบควบคุมคุณภาพน้ำเหลืองผ่านเป็นระบบที่ใช้ขึ้นแท่นแปลงกลิ่นไฟฟ้าในความถี่ต่ำในการควบคุมการเกิดตะกอน,การกัดกร่อนเป็นสิ่งที่จำเป็น และสามารถควบคุมการกระจายเลือดของจุลินทรีย์ในน้ำเพื่อให้ระบบที่ใช้จะต้องประหยัดจากการใช้สารเคมีอย่างสูงสุด นอกซึ่งระบบจะต้องสามารถทำงานได้ตลอด ต่อเนื่อง โดยไม่จำเป็นต้องผ่านการควบคุมเกินขีดจำกัดจากข้าราชการที่สนับสนุนตลอดเวลาที่ใช้จะต้องสามารถสร้างแผนกลับ (MAGNETITE: Fe₂O₄) หรือสินแสระหลักให้เกิดขึ้นในระบบโดยใช้เทคนิคแปลงกลิ่นไฟฟ้าความถี่ต่ำ (ULTRA LOW FREQUENCY WAVE) กระตุ้นให้เกิดน้ำที่ดี โดยผ่านอุปกรณ์ INDUCTOR COIL นอกจากนี้ ยังต้องมีการควบคุมช่องทางควบคุมปริมาณ แต่ละชั้นที่จะอยู่ในน้ำให้ตกตลอดเวลาและเข้ากันได้เป็นระบบการป้องกันการที่มีการผันผวนของความร้อนในระบบได้การควบคุม ปริมาณของแม่เหล็กและจุลินทรีย์ ในน้ำที่ดี จะต้องสามารถควบคุมการใช้แม่เหล็กไฟฟ้าความต่ำสุดการใช้น้ำและทองแดง (SILVER AND COPPER ION) โดยอนุภาคเหล็กและทองแดงจะถูกต้องโดยกระบวนการ IONIZATION จากแหล่ง ELECTRODE ทองแดง และเงิน เข้าสู่ระบบนำดุลิติ้ง ด้วยอัตราที่ควบคุมให้มีความเข้มข้นที่ไม่เกิน 1 ส่วนในล้านส่วน (< 1 PPM) และจะต้องพิจารณาว่าในการควบคุมและกัดจัดเกิดที่เจาะและจุลินทรีย์ในน้ำได้เป็นอย่างดี ระบบควบคุมคุณภาพน้ำเหลืองผ่านจะต้องสอดคล้องกับที่แบ่งน้ำได้อย่างเหมาะสม ระบบที่ใช้จะต้องใช้พลังงานไฟฟ้าที่เหมาะสมกับการตั้งของเครื่อง ไม่ควรใช้ไฟฟ้าสูงเกิน 220 VOLT และไม่ควรใช้ไฟฟ้าเกิน 800 WATT.

3.2 สำนวนประกอบด้านข้างของระบบ:
- ชุดอุปกรณ์ ควบคุม ประกอบด้วย
 - สำนวน ควบคุมการจ่ายพลังงานให้กับระบบ (POWER SUPPLY UNIT)
 - ชุดสรางแรงดันแม่เหล็กไฟฟ้า (DESCALER & MAGNETITE GENERATOR) จะต้องสรางสนามแม่เหล็กไฟฟ้าให้พอเพียงกับการทำงานของระบบ
- ชุดหน่วยแปลงไฟฟ้า (TRANSFORMER RECTIFIER) เป็นชุดอุปกรณ์แปลงไฟฟ้าจ่ายให้กับชุด ELECTRODE ให้เป็นไฟฟ้ากระแสตรง สามารถปรับกำลังการจ่ายกระแสได้ ตั้งแต่ 0-3 AMP. และจะต้องสามารถปรับ ขั้วกระแสไฟที่ค่ายออกได้อยู่ในมิติตัวอย่าง
- ชุด INDUCTOR COIL หรือชุดอุปกรณ์ ให้พลังงานตามแปลงสลักไฟฟ้ากับน้ำ จะต้องมีขนาด ที่เหมาะสมกับชุดของ หลอดน้ำเป็น (COOLING TOWER) ทำจากวัสดุที่ทนทานกับการใช้งาน
- ชุด ELECTRODE เป็นชุดอุปกรณ์ที่จะสร้าง อนุภาค ไฮโดรเจนและออกออก จะให้กับระบบโดยจะรับพลังงานจาก ชุด หน่วยแปลงไฟฟ้า (TRANSFORMER RECTIFIER) อุปกรณ์นี้จะต้องเหมาะสมกับระบบที่ทำการผลิตชั้นอัดเม็ดมีด ผู้รับจ้างจะต้องส่งรายการคำนวณน้ำหนักของระบบที่เหมาะสมพร้อมกับการเสนอของผู้ผลิต

3.3 คุณสมบัติอุปกรณ์
ระบบควบคุมอุณหภูมิหน้าที่จะต้องเป็นของอุปกรณ์ที่เป็นอุปกรณ์สีสีกันโดยตรงหรือได้รับการต่อตั้ง จากผู้ผลิต ทั้งนี้ มีบริการหลังการขาย และ อุปกรณ์นี้มีการใช้งานในประเทศไทยอย่างน้อย 2 ปี ซึ่งกับการรับประกัน 2 ปี โดยจะมีบริการหลังการซ่อมแซม จะต้องดำเนินการเปลี่ยนอุปกรณ์ใหม่แล้วมีการเปลี่ยน ELECTRODE และจะต้องส่งชิ้นส่วนผู้รับจากเหมือนการตรวจสอบระบบ และตรวจสอบ คุณภาพหน้าในระบบ ให้อย่างหนึ่งเดือน ครั้ง เพื่อป้องกันการเกิดการ ทำงานไม่ดี

รายการอุปกรณ์ที่ต้องมีไว้สำรอง ประกอบด้วย
- CONDUCTIVITY
- PH
- TDS.
- FE ION
- CU ION
- TOTAL HARDNESS
- Total Plate Count

3.4 รายการอุปกรณ์
- POWER SUPPLY UNIT ENPC-ELCB 1SET
- DESCALER & MAGNETITE GENERATOR DSPC 5.0-1 1 SET
- TRANSFORMER RECTIFIER TRPC 3 A-AR 1 SET
- INDUCTOR COIL CUPPR 19 FL 1 SET
- Electrode 1.5 kg, ETCT 2C2S 2 SET

3.5 ระยะเวลาการผลิต เริ่ม ELECTRODE เก็บเดือนถึง 2 ชุด

4. OZONE GENERATOR

ให้ผู้รับจ้างจัดหา ชุด OZONE GENERATOR กลิ่น Ozone ต้องมั่นคงในระบบน้ำเติมตามแบบอุปกรณ์ต่อ

4.1 OZONE GENERATOR CORONA DISCHARGE MEDIUM FREQUENCY
- OZONE CAPACITY 100 g/hr/unit
- OZONE CONCENTRATION 80 g/Q
- FEED GAS SUPPLY OXYGEN GENERATOR
- FLOW RATE 1.25 Q/hr
- COOLING SYSTEM WATER COOLED
- HIGH VOLTAGE 10 kV
- POWER SUPPLY 220 VAC, 50 Hz.
- POWER CONSUMPTION 1 KVA.
- CABINET CASING OUTDOOR TYPE

PROTECTION
- ELECTRODE FAIHER CUT-OFF
- WATER BACK LEAK BYPASS
- NO SUCTION CUT-OFF

4.2 OZONE MIXER
DYNAMIC MIXER METHOD
- TURBINE MIXER 0.75Kw / 2800 RPM.
- ELECTRICAL 380VAC 50Hz
- OZONE INJECTOR VENTURY VACUUM OPERATION
- RECYCLING PUMP 5 m³/hr At 40 m. 1.5KW 2800 RPM 380VAC.

4.3 MONITORING
- ONLINE MONITORING
- TIMER CONTROLLER
- FLOW METOR
- AM METER

4.4 POWER CONSUMPTION
TOTAL POWER CONSUMPTION 5KW
- LAMP INDICATOR
หมวดที่ 9
เครื่องสูบน้ำ (WATER PUMP)

1. ความต้องการทั่วไป

1.1 เครื่องสูบน้ำเป็นชนิด HORIZONTAL SPLIT CASE ต้องเป็นเครื่องสูบน้ำชนิด CENTRIFUGAL, HORIZONTAL MOUNTED, HORIZONTAL SPLIT CASE, มีใบพัดแบบ DOUBLE SUCTION, SINGLE STAGE มี Casing แบบ VOLUTE TYPE ขับโดยตัวถัง MOTOR ไฟฟ้า 380V, 3 PHASE, 50 Hz. โดยมีตัวถังแบบ FLEXIBLE COUPLING ติดต่อกับระบบโครง ฐานหลังชิ้นละกัน

1.2 เครื่องสูบน้ำจุลระดับความดุน จะต้องจัดทำฝ่ายเป็นชุดที่สำเร็จ จ่ายด้วยวิธีน้ำที่ไม่ปนในประเทศ ที่ได้รับการตั้งตั้งอย่างเป็นทางการจากโรงงานผู้ผลิตไม่น้อยกว่า 5 ปี และมีบริการทาง และ ประโยคิตที่ชื่นชอบได้

1.3 ในกรณีสนใจของผู้ผลิตกำหนดเครื่องสูบน้ำ ผู้รับจ้างต้องแน่น PERFORMANCE CURVE ของ เครื่องสูบน้ำมาด้วย ถูกที่เลือกสำหรับการใช้งานควรอยู่ในบริเวณกลางของ CURVE ซึ่งเป็นจุดที่ เครื่องสูบน้ำมีประสิทธิภาพสูง และมีความถือผู้ผลิตเรียบร้อย (FLOW RATE) และความตัน ปริมาณไม่น้อยกว่าที่สุด

1.4 สมรรถนะของเครื่องสูบน้ำจะต้องสามารถสูบน้ำได้ด้วยอัตราการไหล และแรงดันไม่น้อยกว่าที่ กำหนดไว้ในรายการเอกสารภายนอก

1.5 การเลือกมอเตอร์และเครื่องสูบน้ำต้องเลือกให้ถูกต้องและใช้งานเป็นแบบ NON-OVERLOADING PERFORMANCE CURVE ของเครื่องสูบน้ำและมอเตอร์ที่เลือกใช้ต้องมี SERVICE FACTOR ไม่ น้อยกว่า 1.1 มอเตอร์ที่ใช้เป็น INDUCTION MOTOR ชนิด TOTALLY ENCLOSED FAN COOLED (IP 55) INSULATION CLASS F ใช้กับระบบไฟฟ้า 380V/3PH/50Hz.

1.6 ให้ติดตั้ง FLEXIBLE CONNECTION ที่ร้อยตัวเล็กและตัวดูดกลับไปกลั่นตัวเครื่องสูบน้ำให้มากที่สุด ในกรณีที่เกิดการกระแทกและเสี่ยงจากเครื่องสูบน้ำ สำหรับที่ห้องระบบที่

1.7 สถิตเทรนเนอร์ (STRAINER) ที่ร้อยตัวเล็กไฟดีติดตั้งไว้ร่วมระบบน้ำสูง ขนาดไม่ต่ำกว่า 25 มม. (1 นิ้ว) ไว้ก่อนมิติที่สกัดและมีหัวเหล็กรูสีระยิม 10 มม. (4 นิ้ว) ต่อออกจากหัวรั้งหรือหัวรั้ง CAP ปิดที่ปลายที่

1.8 ชุดเครื่องสูบน้ำและมอเตอร์ต้องได้รับการปรับแนวน์ (ALIGNMENT) และมีต้องมั่นคงคงดีกัน แน่น แบบ INERTIA BLOCK ที่เป็นคอนกรีตเสร็จสมบูรณ์โครงเป็นเหล็ก VIBRATION ISOLATOR ได้ ทำเป็นแบบมีเสร็จมาติดกับระยะต่อ (STATIC DEFLECTION) ไม่น้อยกว่า 25 มม. (1 นิ้ว) และ บริเวณแต่ละชุดต้องวางน้ำมันไม่เกินน้ำหนักสูงสุด ที่ผู้ผลิตกำหนดไว้

1.9 เครื่องสูบน้ำเย็น (CHILLED WATER PUMP) ทุกชุดต้องมีจำนวนกันความร้อนแบบ CLOSED CELL FOAMED PLASTIC ความหนา 25 มม. (1 นิ้ว)
2. วัสดุและโครงสร้างของเครื่องสูบน้ำ

2.1 ด้านเครื่องสูบน้ำ (CASING) ทำด้วยเหล็กกล่อง ออกแบบให้แรงที่ความตัน (WORKING PRESSURE) ไม่ต่ำกว่า 14 กก./ตร.ซม. (200 ปอนด์ต่อตารางนิ้ว) และต้องได้รับการทดสอบความตัน (HYDROSTATIC TEST) ถึง 1.5 เท่าของความตันที่ออกแบบไว้ (CASING DESIGN MAXIMUM WORKING PRESSURE) ข้อต่อของเครื่องสูบน้ำกับท่อ จะต้องเป็นแบบ หน้าเปลือก (FLANGED CONNECTION) ทั้งทางด้านพุ่กลับและทางด้านส่ง และต้องตัดให้เป็นเส้นตรงกัน กับตัวเครื่องสูบน้ำพร้อมทั้งมีการทับเกลียว และล็อคไว้ (TAPPED AND PLUGGED) ที่ด้านเรือน สำหรับการระบายน้ำ (VENT) และการระบายน้ำทิ้ง (DRAIN)

2.2 ใบพัด (IMPELLER) จะต้องเป็นแบบ ENCLOSED TYPE ทำด้วย BRONZE หลอดเป็นหลักเดียว ได้รับการป้องกันดูดซึมทางด้าน STATIC และ DYNAMIC จากولوجน้ำผู้ผลิต ใบพัดจะต้อง ไม่เสียหายเมื่อทุ่มลงภายใต้:

2.3 CASING RING ต้องเป็นชนิดที่เหมาะสมกับสภาพการใช้งาน ทำด้วย BRONZE สามารถดอก เปลี่ยนได้โดยสะดวก

2.4 เสา (SHAFT) ทำด้วย STAINLESS STEEL ออกแบบให้มี SAFETY FACTOR สูง ค่า SHAFT DEFLECTION ที่ STUFFING BOX ไม่เกิน 0.05 มม.

2.5 SEAL เป็นชนิด MECHANICAL SEAL และ SEAL ที่เลือกไว้ที่ใช้ตามมาตรฐานผู้ผลิตที่เลือกไว้ กับเครื่องสูบน้ำ ที่มีโครงสร้างแบบ CAST IRON BRONZE FITTED

2.6 BEARING ต้องเป็นชนิด HEAVY DUTY BALL BEARING แบบ GREASE LUBRICATE ออกแบบให้ใช้งานตามที่กำหนดไว้ไม่ต่ำกว่า 100,000 ชั่วโมง (AVERAGE BEARING LIFE)

2.7 COUPLING ระหว่างก้อนรอนและเครื่องสูบน้ำ ต้องเป็นแบบ FLEXIBLE COUPLING หรือ URETHANE หรือ STEEL PIN & BUSHING มีค่า SERVICE FACTOR อย่างห่าง 1.6 และ จะต้องมีความปลอดภัย (COUPLING GUARD) ติดตั้งกับโครงสร้างเครื่องสูบน้ำ สามารถยกออกได้ตาม ยกเว้นเครื่องสูบน้ำแบบ IN-LINE ซึ่งเป็นแบบ CLOSE COUPLED DESIGN.

3. การปรับแต่งใบพัด (IMPELLER TRIMMING)

หลังจากที่ได้ทำการทดสอบและปรับแต่งระบบเป็นที่เรียบร้อย จนได้ดูดท่าของเครื่องสูบน้ำที่เหมาะสมแล้ว ผู้บริการต้องตรวจสอบการทำงานของเครื่องสูบน้ำอีกครั้ง ถามหาใบพัดของเครื่องสูบน้ำที่มีขนาดใหญ่เกินความจำเป็น ผู้บริการต้องดูดังนี้การรดน้ำใบพัดเครื่องสูบน้ำถ้ากลับไป ปรับแต่ง (TRIMMING) ให้ได้ในที่เหมาะสม โดยกำหนดให้ได้ขนาดใบพัดให้สามารถสร้าง ความตัน (PUMP HEAD) สูงกว่าจุดทำการปิดกั้นไม่น้อยกี่ 10%.

หมายเหตุ : การตรวจสอบดูดท่างานปิดให้ดูดตรวจสอบในสภาพการเดินเครื่องเต็มที่ (FULLY OPERATION)
หมวดที่ ๑๐
กังข่ายตัววางน้ำ (EXPANSION TANK)

เป็นแบบ CLOSED TYPE มีขนาดจานวนตามแบบ มีระยะละเอียดต่อไปนี้
(1) ตัวกังข่ายตัววางแฝงหลัก พร้อมทั้งบูทตัวขยายแนว ELASTOMERIC CLOSED CELL INSULATION
 ขนาด ๑ นิ้ว
(2) มี PRESSURE GAUGE
(3) มีวาล์วที่จำเป็นต่างๆ
(4) RELIEF VALVE
(5) มีอุปกรณ์สำหรับการฟื้นฟูความดันสูง
(6) มีหัวเด็มฝ้า
(7) มี AIR VENT
(8) อุปกรณ์อื่นๆ ที่จำเป็นและเหมาะสมในการใช้งานได้ผลและเรียบร้อย หรือตามมาตรฐานของผู้แทน
 จำหน่าย
(9) ก่อนการขออนุมัติใช้งานแล้วจะต้องมีแบบแปลนงาน และต้องทำแบบติดตั้ง (SHOP DRAWING) มาให้
 ตรวจสอบ เพื่อขออนุมัติก่อนการติดตั้ง
หมวดที่ 11
การปรับสภาพนำข่ายของระบบน้ำเย็น (CHEMICAL FEEDER TANK)

ให้ผู้รับจ้างจัดหาเครื่องมือ เพื่อดำเนินในระบบน้ำเย็น โดยต้องการทำกรรมรวม 4 ครั้ง คือ
1. โดยเครื่องตกหล่นจากติดตั้งท่อและสิ่งอื่นๆแล้ว ให้ล้างที่สิ่งต่างๆออก 2 ครั้ง เทียบแล้วจึงทำการนำน้ำที่ส่วนล่างจากติดตั้งจากระบบ เทียบเครื่องมือให้ตรงกัน หลังจากนั้นออก 5 เทียบ จึงเทียบเครื่องมือเป็นครั้งที่ 3 และก่อนครบ 12 เทียบ หลังจาก START-UP ให้เทียบ เทียบเครื่องมือเป็นครั้งที่ 4 เทียบเครื่องมือที่ใช้บริการและควบคุมใช้น้ำ ต้องเป็นไปตามคำแนะนำของผู้แทนเจ้าหน้าที่ตามหนังสือแนะนำของผู้ผลิต ต้องติดตั้งท่อพร้อมปั๊มและอุปกรณ์ เทียบที่ควบคุมการเข้าไปในระบบน้ำเย็นพร้อมที่อุปกรณ์ควบคุมการทำงานให้เรียบร้อย ขนาดฉลับใส่สารแต่ละแบบให้เลือกตามความเหมาะสมของการใช้งาน (ขนาดประมาณ 200 LITRE) และต้องเสนอรายการละเอียด และต้องทำ แบบติดตั้ง (SHOP DRAWING) มาให้ตรวจสอบ เพื่อขออนุมัติที่ก่อนลงมือทำงาน
หมวดที่ 12
ท่อผนัง (PIPING)

1. การมีคติ

1.1 ผู้บริหารจะต้องทำการตรวจสอบแผนการเดินท่อ วิธีการเดินท่อแบบต่างๆให้เหมาะสมกับสภาพการ
ก่อสร้างที่เป็นจริง สะดวกและง่ายต่อการเข้าถึงในการเดินท่อและข้อมูลปัจจุบัน หากไม่ได้แน่ใจ
จะต้องจัดให้ทั้งหมดในแนวแผน หรือต้องทำการแก้ไข

1.2 การมีคติท่อผนัง จะต้องเป็นไปโดยถูกต้องโดยการวิเคราะห์ความยาวเทียบกับ ขนาดที่ต้องการ เมื่อมี
ติดต่อท่อนแล้วจะต้องไม่เกิดแรงเรียบ (STRESS) ภายในผนัง อันจะทำให้ระบบท่อหรืออุปกรณ์
เสียหายได้

1.3 การมีคติระบบท่อผนัง จะต้องป้องกันการเกิดผลต่อต้านโดยไม่เกิดความเสียหายต่อชัดเจนต่างๆ
โดยใช้ตัวช่วย OFFSETS และ LOOPS ตามความเหมาะสมเพื่อให้การoganyขึ้นของท่อน

1.4 การต่อท่อนกับอุปกรณ์ที่ต่างๆ และวาล์ว ต้องเป็น UNION หรือ FLANGE เพื่อ

1.5 จะต้องไม่มีแนวท่อนเดินผ่านสุทธิและแน่ใจ หม้อแปลงไฟฟ้า หรืออุปกรณ์อื่นๆ อยู่ภายใน

1.6 มีเฉพาะ ผู้คนก่อสร้าง ที่จะทำการออกแบบท่อจากภายในที่ผ่านเวลาก่อนการติดต่อกันและข้อมูลที่เป็น
ชัดเจนที่จะทำให้การดำเนินงานในแนวที่ถูกต้องกับการก่อสร้างที่ถูกต้องและที่จะเป็น

1.7 การมีคติของท่อผนัง เบื้องต้นดังต่อไปนี้นี้ที่ต้องยอมตามมาตรฐานแบบท่อนetherlands (BRANCH)
ที่ต่อออกจากท่อน (MAIN) ให้ใช้ TEE มาตรฐาน นอกจากท่อนอุปกรณ์ในขนาด 8 และใหญ่กว่า
หากหากมีท่อนมากกว่าไม่เกินเครื่องหมายของท่อนที่ยอมให้ใช้ WELD-OR-LET ได้

1.8 ของการ (ELBOW) ต้องเป็นแบบมีจักว่าง (LONG RADIUS ELBOW)

1.9 ในกรณีที่ใช้ขอบผนังที่แนวแน่นอน (HORIZONTAL) ให้ใช้ขอบตัดแนว (ECCENTRIC
REDCENER) โดยมีคติที่ด้านหลังอยู่ในระดับเดียวกัน ตามเกณฑ์ที่อยู่ด้านในท่อนที่ต้อง
และใช้ตัวช่วยเพื่อให้การที่จะอยู่ภายใน

1.10 ขอบผนังของทองแบบเกี่ยว หัวใช้แบบตัดเหล็ก (BUSHING) ต้องใช้ขอบตามมาตรฐานผนัง

1.11 ติดต่อกับ AUTOMATIC AIR VENT พร้อม GATE VALVE และต่อท่อจาก AIR VENT ไปยังจุดที่ต้องเริ่ม
ที่ใกล้ที่สุด สำหรับบริเวณไปไม่ถึงคือ-
ก. MAIN HEADER ในท่อนเครื่องทำน้ำเย็น
ข. ชุดบันทุกของท่อน CHILLED WATER RISERS
ค. อื่นๆ ตามที่ระบุในแบบ และที่ถูกกำหนด

1.12 จุดที่ต้อง (CLAMP) ในแนวตั้ง (VERTICAL RISER) และข้อมูลไม่ควรอยู่สูงกว่า 1.50 เมตรจาก
พื้นของแต่ละชั้น

1.13 จุดสุดที่ของทองแนวตั้ง (RISER) ทุกท่อนต้องเชื่อมDIRT POCKET และติดต่อกับ DRAIN VALVE ไปใช้
ถ้าจะต้องเชื่อมจากทองต่อทองต่อตั้งๆ ขนาดเกณฑ์ข้างล่างพร้อมมี CAP ปิดปลายของทองต่างช่วง
ที่ไว้ไม่ได้ระบุในแนวที่เพิ่มเติมแน่นอน
1.14 ท่อในแนวตรงต้องต่อกันให้มีข้อต่อใกล้ที่สุด ห้ามใช้เศษท่อต่อกัน
1.15 ท่อระบายน้ำที่ผ่านกรองรับทำต้องมี TRAP และทางเดินไปทางข้างทางไม่น้อยกว่า 25 มิลลิเมตร (1 นิ้ว) ต้องความยาว 3 เมตร (10 ฟุต) หรือ SLOPE ประมาณ 1 ต่อ 100 หาก SLOPE น้อยกว่า 1 ต่อ 100 ให้เลือกขนาดท่อใหญ่ขึ้นแล้วไปที่ขนาดท่อที่ใช้ ท่อไม่ได้ระบุในแบบให้ใช้ขนาดตามตารางดังนี้:

<table>
<thead>
<tr>
<th>มีลิ่มน้ำ (มิลลิเมตร)</th>
<th>22 (3/4)</th>
<th>25 (1)</th>
<th>32 (1 1/4)</th>
<th>40 (1 1/2)</th>
<th>50 (2)</th>
<th>75 (3)</th>
<th>100 (4)</th>
<th>125 (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ระหว่างท่อลม</td>
<td>0 - 2</td>
<td>2 - 5</td>
<td>5 - 30</td>
<td>30 - 50</td>
<td>50 - 170</td>
<td>75 - 250</td>
<td>170 - 300</td>
<td>300 - 430</td>
</tr>
<tr>
<td>ระหว่างท่อจะ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ระยะการสูญเสีย</td>
<td>0 - 3</td>
<td>3 - 8</td>
<td>8 - 50</td>
<td>50 - 75</td>
<td>75 - 250</td>
<td>250 - 400</td>
<td>400 - 600</td>
<td>600 - 900</td>
</tr>
</tbody>
</table>

2. ที่แขวนและรองรับหน้ากาก (HANGER AND SUPPORT)

2.1 ชนิด รูปแบบ วิธีการติดตั้งและช่างระดับที่แขวนหรือรองรับหน้ากากที่ให้เป็นไปตามหลักวิศวกรรม
2.2 การแขวน ใช้วัสดุที่ต้องคำนึงถึงการใช้งาน เส้นทางที่ติดตั้งและหน้ากากของท่อ น้ำในท่อรวมทั้งอุปกรณ์ที่ติดตั้งท่อเป็นหลักในการพิจารณาอักขรนัยและขนาดของ HANGER และ SUPPORT การติดกันที่เป็นอิสระ เหลือให้ใช้ EXPANSION BOLT ที่มีไว้เป็นอิสระใน (POWER ACTUATED PIN)
2.3 ท่อแน่นอนที่กั้นขึ้นแน่นิยมใช้ SUPPORT รับจากท่อน้ำที่ใส่ขึ้นต่อกันที่แน่นอนและแนวดังนี้
2.4 ที่แขวน SLEEVE เป็นตัวรองรับหน้ากากโดยเดี่ยว
2.5 เหล็กแขวน (HANGER ROD) ต้องเป็นเหล็กเต็มขนาด อาจเป็นเหล็กที่มีหรือแหล่งที่กู้กันได้การที่มาก่อนหรือมากกว่าปรับระดับท่อ ต่อกันที่ได้โดยมีอิสระเป็นอิสระจากส่วนนั้นโดยปั๊บหลังแล้วไม่น้อยกว่า 20 มิลลิเมตร (3/4 นิ้ว) และไม่อาจเกินกว่าระดับต่อกันของ SUPPORT
2.6 หลังจากการติดตั้งระบบก่อถังหมุด และเติมน้ำเข้าจนเต็มแล้ว ต้องทำการตรวจสอบและปรับระดับให้ถูกต้องในระดับที่ถูกต้อง

3. ปลอกถังหมุด และแผ่นปิด (SLEEVE AND ESCUTCHEON)

3.1 ผู้รับจ้างต้องติดตั้งปลอกถังหมุด (SLEEVE) ต่อต้องติดตั้งที่ผ่านการรับรองและมีหนังสือรับรองติดตั้งจากองค์กรที่มีกฎหมายกำหนด

3.2 ถังถังดังกล่าวที่นอนกันหรือหลอกกันก็ได้ ต้องติด SLEEVE ให้ถูกต้อง

3.3 ขนาดภายในของ SLEEVE ต้องตรงกับขนาดท่อและแนวแนวท่อที่ถังต้องไม่น้อยกว่า 25 มิลลิเมตร (1 นิ้ว) ของท่อที่ต้องติดตั้งกับท่อใช้เครื่องมือตัดท่อได้จากกับแผนผังและกฎหมายที่กำหนด

3.4 ข้อจำกัดระหว่าง SLEEVE กับท่อและแนวแนวที่ติดตั้งภายในอาคาร ต้องติดไว้แน่นด้วยผิว MINERAL WOOL แผ่นปิด (ESCUITCHION) หัวสองด้านหัวด้วยแผ่นอุปกรณ์อื่น

3.5 ขนาดของแผ่นปิดมีดังนี้:

ก. ขนาดส่วนบน 15 มิลลิเมตร (1/2 นิ้ว) ที่เป็น 100 มิลลิเมตร (4 นิ้ว) ความหนาของแผ่นปิด 2 มิลลิเมตร ความกว้างโดยรอบต่อ 5 เซนติเมตร (2 นิ้ว)

ข. ขนาดส่วนกลาง 15 มิลลิเมตร (1/2 นิ้ว) ที่เป็น 125 มิลลิเมตร (5 นิ้ว) ความหนาของแผ่นปิด 2 มิลลิเมตร ความกว้างโดยรอบต่อ 10 เซนติเมตร (4 นิ้ว)

4. ท่อที่ติดตั้งแผ่นปิดถังภายนอกอาคาร (EXTERIOR WALL)

4.1 SLEEVE ที่ด้านต่่อน้ำหลอกเหนือกว่า มีแนวช่องที่ติดตั้งหลอกท่อ ความหนาของแผ่นหลักไม่น้อยกว่า 5 มิลลิเมตร (1/16 นิ้ว) หรือที่ด้านหลัก STANDARD WEIGHT WATER STOR แผ่นปิด SLEEVE ตลอดแนว ความหนาของแผ่นหลักไม่น้อยกว่า 3 มิลลิเมตร (1/8 นิ้ว) เหลือของแนวที่ด้านปิดหลัก ใช้แผ่นปิด และมีความดุกว่าขั้นตอนหลัก ใช้แผ่นปิดทั้งก่อนติดตั้ง

4.2 ท่อที่ติดตั้งแผ่นปิดที่ติดตั้งแผ่นหลอกเหนือกว่า มีแนวช่องที่ติดตั้งหลอกท่อ ความหนาของแผ่นหลักไม่น้อยกว่า 3 มิลลิเมตร (1/8 นิ้ว) หรือที่ด้านหลัก STANDARD WEIGHT สำหรับ SLEEVE ที่พลิกให้ติดตั้งในส่วนท่อที่ติดตั้งหลักจากแผ่นปิดแผ่น (FINISH FLOOR) 10 เซนติเมตร (4 นิ้ว) กุศลของแนวต่อกับ MINERAL WOOL แล้วครึ่งวงหน้า-หัว ด้วย SEALANT หรือ CAULKING COMPOUND

5. การต่อถัง

5.1 การติดกั้นข้อม (THREADED JOINT)

ก. เลือกโดยการใช้แบบ PARALLEL THREAD เว้นแต่ถ้าผลิตภัณฑ์ให้ความต้องการความ ต้านทานไม่สูงกว่า 10 กิโลกรัมต่อตารางเซนติเมตร (150 ปอนด์ต่อตารางนิ้ว) เลือกโดยการเป็นแบบ TAPER THREAD ตามมาตรฐานอุตสาหกรรม ล่าสุด 281 หรือ BS 21 : 1973

ข. пускถังที่ติดตั้งกั้นข้อมเสร็จแล้ว ต้องตรวจสอบถังน้ำอุปกรณ์ที่ติดตั้งโดยรอบที่ติดตั้งกับหล små
โปรดอ่านข้อความดังนี้พิจารณาให้แน่นอน

5.2 การต่อแบบขึ้น (WELDED JOINT)

ก. ก่อนการเชื่อม จะต้องทำความสะอาดส่วนปลายที่จะนำมาเชื่อม ด้วยปลายนิ้วที่จะนำมาเชื่อม ให้ดีจนกว่ากัน

ข. ที่จะนำมาเชื่อมให้ปั๊มปลายเป็นมุม (BEVEL) ประมาณ 20 องศา - 40 องศา โดยการ เกลี่ยหรือใช้จุ๊ปเชื่อมตัด แต่ต้องใช้ยานพาหนะอุตสาห์ และระเบิดให้ถูก พร้อมก่อนให้ เรียกร้องก่อนการเชื่อม

ค. การเชื่อมต่อโดยใช้เป็นแบบ BUTT-WELDING ใช้วิธีการเชื่อมด้วยไฟฟ้า (ARC WELDING) ระยะเชื่อมจะต้องเป็นไปอย่างสม่ำเสมอ แสดงแนวเชื่อมให้เห็นที่นำมาเชื่อม และฉีกตัวกันได้อย่างน่าเรื่อง

5.3 การต่อแบบหัวเหล็ก (FLANGED JOINTS)

ก. เลือกมาตรฐานเหล็กหัวเหล็ก และการออกแบบให้เหมาะสมกับมาตรฐานท่อ (OUT-SIDE DIAMETER) ที่เลือกใช้งาน และหัวเหล็กที่สอดประสานกับอุปกรณ์ต่างๆ หัวเหล็กที่ใช้ประกอบกับท่อจะต้องเป็นแบบเดียวกัน

ข. การยึดจับหัวเหล็กจะต้องจับให้แน่นและมั่น (FACING FLANGE) ให้แน่นที่กันและตั้ง ออกจากท่อ การเชื่อมหัวเหล็กกับท่อ ให้เชื่อมอย่างน้อย 2 รอบทีกัน

ค. สลักเกลียว (BOLT) และผู้อัน (NUT) ที่ใช้กับหัวเหล็กโดยทั่วไปเป็นแบบ CARBON STEEL ยกเว้นที่ใช้กับระบบท่อซุปเปอร์ดีที่จะต้องใช้แบบ GALVANIZED OR CADMIUM PLATED BOLT AND NUT และที่ใช้กับระบบท่อเหล็กสแตนเลส จะต้องใช้ท่อ STAINLESS STEEL สิ่งเหล่านี้จะต้องมีความยาวพอเหมาะกับการตัดหัวเหล็ก เมื่อขยับเกลียวแล้ว จะต้องมีการติดต่อกันอย่างแน่นและมั่นผู้อันไม่น้อยกว่า 1/4 ของเส้นผ่าศูนย์กลางของสลักเกลียว

5.4 การต่อแบบขัดขัดข้อมูล (SOLDERED JOINTS)

ก. ปลายท่อที่ต้องการนำมาต่อเชื่อมจะต้องพัฒนาให้ดีนุ่ม และหนาก่อนที่จะต่อเชื่อม

ข. ใช้บริการ SOLDER FLUX ที่สั่งทำก่อนและ FITTING ตามที่ต้องการเชื่อมประสาน อุณหภูมิการทำงานและบริเวณ FLUX ที่ใช้จะต้องเป็นไปตามคำแนะนำของผู้ผลิตโดยอย่างเคร่งครัด โดยเฉพาะการใช้ SOLDER แบบ SILVER BRAZING น้ำมันกระ สำหรับจะต้องเชื่อมต่อให้ หนาก่อนจะเป็นอย่างถ้วนต่อกัน

6. ท่อฝนและอุปกรณ์

6.1 ท่อฝนเย็น (CHILLED WATER PIPE) ท่อฝนเย็นทุกระดับ ถ้าไม่ได้ระบุเป็นอย่างอื่น จะต้องใช้หลอดสี (BLACK STEEL PIPE) ชนิด ERW SEAMED PIPE มีการสัมประสิทธิ์ตามมาตรฐาน AP-1-5L หรือ ASTM A-53 ความหนาไม่น้อยกว่า SCHEDULE 40 ทรงท่อจะต้องทำปลายท่อแบบ BEVEL END และมีน้ำหนักเริ่มต้นมอยตามมาตรฐานท่อ และขนาดที่ต้องการทำสำหรับท่อที่มี ขนาดเล็กกว่าเส้นผ่าศูนย์กลาง 10 มม.

6.2 อุปกรณ์ประกอบท่อเหล็ก (PIPE FITTING) ใช้ STANDARD WEIGHT FITTING แบบเชื่อมหรือ แบบต่อจริงเหล็ก หลอดเหล็กใช้ FORGED-STEEL แบบ SLIP-ON, WELDING-NECK หรือ
 SOCKET WELDING มาตรฐาน BS 10 TABLE F หรือ CLASS 150 lb, มาตรฐาน ANSI B 16.5 (BS 1500) ประกอบใด NATURAL RUBBER หรือ ASBESTOS สูญญ้า ประกอบ铭牌 UNION ใช้แบบ GROUND JOINT BRONZE OR BRASS TO IRON SEAT

6.3 ท่อหน้าต้มแคนเซอร์ (CONDENSER WATER PIPE) ท่อหน้าต้มแคนเซอร์ที่พบจะ ตัวไม่ได้ระบุเป็นอย่างอื่น จะต้องใช้ท่อหลักต่อ (BLACK STEEL PIPE) ชนิด ERW SEAMED PIPE มีท่อแบบพิเศษตามมาตรฐาน API 5L หรือ ASTM A-53 ความหนาไม่น้อยกว่า SCHEDULE 40 ท่อทุกท่อนต้องทำเป็นท่อ synopsis BEVEL END และพิมพ์รูปเบย์ฟ่อตามมาตรฐานท่อ และขนาดระบุลงบนตัวท่อส่วนที่มีขนาดไม่เกินสิบสี่มิลลิเมตร 10 มม.

6.4 ท่อน้ำเดิม (MAKE UP WATER PIPING) และท่อน้ำที่ยาวจากหลายแห่ง (COOLING TOWER DRAIN) วัสดุที่ใช้ประกอบระบบท่อน้ำเดิม และท่อน้ำที่ยาวจากฤดักของระบบประปาของอาคารจนถึงท่อเริ่มได้ใช้ท่อเหล็กกลวงลวดคิว (GALVANIZED STEEL PIPE) ที่มีลิ้นจี่ตามมาตรฐาน BS 1387 : 1967, CLASS MEDIUM ท่อดาบประกอบท่อ (PIPE FITTING) ใช้แบบมีเกลียวด้วย MALLEABLE IRON หรือ MILD STEEL

6.5 ท่อน้ำที่ยาว CONDENSATE DRAIN ของเครื่องปั่นอากาศใช้ท่อ PVC, CLASS 8.5 ตามมาตรฐานเลขกันเรืออุตสาหกรรม ผัง 17-2524 ลูปภายนอกต่อท่อ จะต้องใช้ชนิดที่มีความหนาตามประเภทท่อที่ใช้ และใช้ปั๊มต่อท่อตามคำแนะนำของผู้ผลิต
หมวดที่ 13
วัสดุและอุปกรณ์ประกอบท่อน้ำ (Valve And Accessories)

1. ความต้องการทั่วไป

1.1 วัวถุทุกชนิด (ยกเว้น CONTROL VALVE) ทั้งน้ำแข็งและข้อต่ออ่อนต่อมีขนาดเท่ากับท่อน้ำที่อุปกรณ์ติดตั้งต่ออยู่

1.2 วัวติดตามที่ใช้ควบคุมผ่านการปิด-เปิด (ON-OFF) เร่งปั๊มย้ายอากาศต้องมีขนาดเท่ากับท่อน้ำที่วัวติดตั้งต่ออยู่ และต้องมีความตันเดดของน้ำที่กว้างอย่างไม่เกิน 3.0 เมตร (10 พุ่ง) ของท่อน้ำที่ปริมาณการไหลของน้ำสูงสุดและจะต้องไม่มีเสียงดัง

1.3 โดยทั่วไปวัวที่ติดตั้งท่อน้ำในแนวตั้ง (HORIZONTAL PIPE) ต้องใช้ก้ำTEEอยู่ในแนวตั้ง เว้นแต่จะมีเฉพาะอยู่ในบริเวณที่มีการณ์ลึกกว่ารูปสูงกว่าในการติดตั้งหรือใช้งาน จึงอนุญาตให้ก้าTEEติดตั้งอยู่ในแนวตั้งได้ที่ช่วงที่อยู่กับการพิจารณาและอนุมัติตามผู้ควบคุมงานแต่ละกรณี

1.4 วัวที่ก่อกองและใช้งานปิด-เปิด หากสามารถทำได้ ต้องติดตั้งให้กว้างอยู่ไม่สูงกว่า 1.50 เมตรจากพื้น

1.5 วัวขนาด 100 มิลลิเมตร (4นิ้ว) และใหญ่กว่าที่ติดตั้งอยู่สูงเกิน 2.50 เมตร จากพื้นต้องติดตั้ง CHAIN WHEEL และใช้สำหรับเหล็กในเปลี่ยนหัวอย่างมากกว่าจากพื้นประมาณ 1.00 เมตร พร้อมที่จะต้องมีการเชื่อมต่อตามที่เหมาะสม

2. GATE VALVE

2.1 วัวขนาด 15 มิลลิเมตร (1/2นิ้ว) ถึง 50 มิลลิเมตร (2นิ้ว) ตัววัวติดตั้งที่ BRONZE แบบ SCREW BONNET, SCREW END CLASS 125 (200 W.O.G.), NON RISING STEM

2.2 วัวขนาด 65 มิลลิเมตร (2 1/2นิ้ว) และใหญ่กว่า ตัววัวติดตั้งที่ CAST-IRON, BOLTED BONNET, BRONZE TRIMMED, OS & Y, SOLID WEDGE, FLANGED ENDS, CLASS 125 (200 W.O.G.)

2.3 วัวจะต้องมีแบบให้ทันแรงดันใช้งาน (W.O.G. PRESSURE RATING) ได้ไม่น้อยกว่า 14 กิโลกรัมต่อตารางเซนติเมตร (200 ปอนด์ต่อตารางนิ้ว)

3. GLOBE VALVE

3.1 วัวขนาด 15 มิลลิเมตร (1/2นิ้ว) ถึง 50 มิลลิเมตร (2นิ้ว) มีรายละเอียดข้อต่อกับ GATE VALVE ขนาดเดียวกัน และ DISC จะต้องเป็นแบบ TAPER PLUG

3.2 วัวขนาด 65 มิลลิเมตร (2 1/2นิ้ว) และใหญ่กว่าเป็นชนิด CAST-IRON,BOLTED BONNET, BRONZE TRIMMED, FLANGED ENDS NON RISING STEM RENEWABLE DISC AND SEAT RING, DISC ที่เลือกใช้จะต้องเหมาะสมกับที่ใช้งาน, CLASS 125 (200 W.O.G.)

3.3 วัวจะต้องมีแบบเป็นแบบที่ทันแรงดันใช้งาน (W.O.G.PRESSURE RATING) ได้ไม่น้อยกว่า 14 กิโลกรัมต่อตารางเซนติเมตร (200 ปอนด์ต่อตารางนิ้ว)
4. CHECK VALVE

4.1 CHECK VALVE จะต้องเป็นแบบ NON-SLAMMING CHECK VALVE หรือ SPRING LOADED SILENT CHECK VALVE, ออกแบบให้ทนแรงดันสูงสุด (W.O.G. PRESSURE RATING) ได้ไม่น้อยกว่า 14 กิโลกรัมต่อกิโลกรัม (200 ปอนด์ต่อตารางนิ้ว)

4.2 วาล์วชนิด 15 มิลลิเมตร (1/2 นิ้ว) กึ่ง 50 มิลลิเมตร (2 นิ้ว) ทำด้วย BRONZE หรือ BRASS มี SEAT ทำด้วย TEF DISC ทำด้วย PVC และมี SPRING ทำด้วย STAINLESS STEEL ข้อต่อแบบ SCREWED ENDS

4.3 วาล์วชนิด 65 มิลลิเมตร (2 1/2 นิ้ว) และใหญ่กว่า BODY ทำด้วย CAST-IRON หรือ STEEL เป็นแบบ WAFER หรือ FLANGED ENDS DISC ทำด้วย BRONZE มี SEAT ทำด้วย BUNA-N หรือ EPDM STEM ทำด้วย STAINLESS STEEL และมี SPRING ทำด้วย STAINLESS STEEL

5. BALANCING VALVE WITH FLOW MEASURING AND SHUT OFF FUNCTION

ขนาด 1/2" - 2" ตัววาล์วเป็นแบบ Y-PATTERN GLOBE VALVE WITH FLOW MEASURING PORT ได้มีความเที่ยงตรงในการวัด + 5% คงที่ตลอดช่วงการปรับค่าน้ำหนาของพวงกลมวงจร และต้องสามารถ ตัดด่านน้ำได้ เมื่อทำการปรับแนวแกน ดังนี้มี INDICATOR เป็นตัวขอบเพื่อถูกจำแนกแนวต่ำบลับ

BODY: BRONZE (BS 1400 :G2)
CONNECTIONS: SCREWED ENDS
PRESSURE RATINGS: PN25

ขนาด 2 1/2" - 12"
BODY: CAST IRON
CONNECTIONS: FLANGED ENDS
PRESSURE RATINGS: PN16

6. BUTTERFLY VALVE

สำหรับใช้กับขนาด 65 มิลลิเมตร (2 1/2 นิ้ว) และใหญ่กว่าหรือตามที่กำหนดในแบบตัววาล์ว (BODY) ทำด้วย DUCTILE IRON และมี ELASTOMER SEAT, ทำด้วย BUNA-N หรือ EPDM CLASS 125 ทนแรงดันสูงสุด (WATER WORKING PRESSURE) ได้ไม่น้อยกว่า 14 กก./ ตร.ซม. (200 ปอนด์ต่อตารางนิ้ว) DISC ทำด้วย STAINLESS STEEL หรือ ALUMINUM BRONZE, SHAFT ทำด้วย STAINLESS STEEL เป็นชิ้นเดียว ONE PIECE THRU SHAFT, ขนาด 6 นิ้ว และใหญ่กว่า ให้ใช้เป็นชิ้นเดียว HAND WHEEL-GEAR OPERATED

7. BALL VALVE

สำหรับใช้กับขนาด 15 มม. (1/2 นิ้ว) ถึง 50 มม.(2 นิ้ว) หรือตามที่กำหนดในแบบ ปฏิบัติการสามารถ แสดงใช้ BALL VALVE แทน GATE VALVE ได้ตัวavidื่าทำด้วย BRONZE, BRASS หรือ ALLOY คาว
8. ข้อต่อด้าน (FLEXIBLE PIPE CONNECTION)

8.1 ข้อต่อด้านสำหรับต่อกันข้างข้างเข้าและเครื่องท่อใกล้กัน และอุปกรณ์ที่ผลิตไว้ในแบบเป็นแบบ REINFORCED NEOPRENE RUBBER (BELLOWS TYPE DOUBLE SPHERE) สามารถทำงานต่อกันในระยะทาง (W.O.G. PRESSURE RATING) ได้ไม่เกินไม่เกิน 14 กิโลกรัมต่อกันต่อกัน 200 ปอนด์ต่อกันต่อกันนิ่ว) ที่อุณหภูมิไม่เกิน 77 องศาเซลเซียส (170 องศาฟาเรนไฮท์)

8.2 ขนาดข้อต่อด้านต่อกัน 50 มิลลิเมตร (2 นิ้ว) และเปล่ากว่าต่อกันแบบเกลียว สำหรับข้อต่อด้าน 65 มิลลิเมตร (2 1/2 นิ้ว) และใหญ่กว่าต่อกันแบบเกลียว

8.3 การติดตั้งแบบต่อด้านที่น้ำแผลงต่อกับ GUIDE และ STOPPER เพื่อป้องกันการเสียหาย อันเนื่องมาจากการยืดตัวของข้อต่อด้าน

9. สะท้านแรง (WATER STRAINER)

9.1 สะท้านแรงใช้สำหรับต่อด้านหัวเข้าเครื่องสูญเสียที่อื่น ๆ ตามที่แสดงไว้ในแบบตัวสะท้านแรง เป็นแบบ Y-PATTERN ออกแบบให้ทนแรงดันใช้งานได้ไม่น้อยกว่า 14 กิโลกรัมต่อกันต่อกันเข้าสระ (200 ปอนด์ต่อกันต่อกันนิ่ว) และสามารถต่อกับต่อท่อน้ำที่resize สามารถต่อกับต่อท่อน้ำได้โดยไม่ต้องถอด สามารถต่อด้านต่อกันจากระบบท่อน้ำ

9.2 ขนาด 15 มิลลิเมตร (1/2 นิ้ว) ถึง 50 มิลลิเมตร (2 นิ้ว) สำหรับท่อน้ำต่อกับ BRONZE ต่อกันแบบเกลียว (THREADED ENDS) จุดแรงไม่ได้สำหรับขนาด MESH NO.20

9.3 ขนาด 65 มิลลิเมตร (2 1/2 นิ้ว) และใหญ่กว่าต่อกันของเหล่าน้ำที่ต่อกัน CAST-IRON CAST STEEL หรือ STAINLESS STEEL ต่อกันแบบเกลียว (FLANGED ENDS) จุดแรงไม่ได้สำหรับขนาด 1/8 นิ้ว ที่ผนังได้ทำบีชแรงต่อกันต่อท่อน้ำที่สามารถต่อกับ 20 มิลลิเมตร (3/4 นิ้ว) หรือใหญ่กว่าท่อน้ำและผนังปิด (CAP) ง่ายทำให้ได้รับ

10. อุปกรณ์อิเล็กทรอนิกส์ (AUTOMATIC AIR VENT)

เป็นแบบ DIRECT ACTING FLOAT TYPE ขนาดของท่อน้ำต่อกัน 20 มิลลิเมตร (3/4 นิ้ว) หรือตามที่กำหนดในแบบ สำหรับท่อน้ำต่อกับ CAST IRON SHAFT ที่ต่อกับ STAINLESS STEEL เป็นชนิด ONE-PRICE THRU SHAFT ออกแบบให้ทนแรงดันใช้งาน (W.O.G. PRESSURE RATING) ได้ไม่น้อยกว่า 10 กิโลกรัมต่อกันต่อกันเข้าสระ (150 ปอนด์ต่อกันต่อกันนิ่ว) สำหรับท่อน้ำต่อกับ CAST IRON สูง ออกและส่วนประกอบภายในที่ต่อกัน STAINLESS STEEL
11. เกจวัดความดัน (PRESSURE GAUGE)

11.1 เป็นแบบ BOURDON TUBE, BRONZE OR STAINLESS STEEL MOVEMENT สำหรับวัดความดันน้ำหรือสารอัดภูมิคุณภาพและอุปกรณ์ที่แสดงไว้ในแบบ ด้านรับหน้าตัว STAINLESS STEEL ทำให้เกิดอุณหภูมิลดลงต่ำกว่า 100 มิลลิเมตร (4 นิ้ว) มีเอกสาร หน้าปิดอยู่ในช่วง 150 ถึง 200 % ของความดันที่ใช้งานปกติ Accuracy within 1 % ของผลกบหน้าปิด มีอุปกรณ์ปรับด้านที่ถูกต้องได้ สำเนาหน้าปิดอยู่ในแบบ PSIG หรือมิลลิเมตร บอทสำหรับวัดความดันที่สำคัญที่สุด

11.2 เกจวัดความดันแต่ละชุดจะต้องมี SHUT-OFF NEEDLE VALVE ทำด้วย BRASS และ SNUBBER

11.3 นอกจากหน้าปิดที่ติดตั้งตามแบบ ผู้รับจ้างต้องจัดหาและส่งมอบ เกจวัดความดัน จำนวน 2 ชุด ให้กับเจ้าของโครงการ ในรัศมีส่งมอบงานเดิม

12. เทอร์โมมิเตอร์ (THERMOMETER)

12.1 เทอร์โมมิเตอร์เป็นแบบหลอดแก้วมีขนาด ADJUSTABLE ANGLE มีกรอบแกน 23 เซนติเมตร (9 นิ้ว) ติดตั้งไว้สำหรับวัดอุณหภูมิของน้ำที่ด้านเข้า-ออกของเครื่องและอุปกรณ์ที่แสดงไว้ในแบบ ด้านรับหน้าตัว CAST ALUMINIUM บนวัสดุอุดภูมิ (STEM) ยาวไม่น้อยกว่า 9 เซนติเมตร (3 1/2 นิ้ว) มีเส้นสตายน้ำเป็น 30-180 องศาต่างกัน สำหรับวัดอุณหภูมิผ่านระบบ ความร้อน Accuracy within 1 % ของผลกบหน้าปิด

12.2 เทอร์โมมิเตอร์แต่ละชุดจะต้องติดตั้งร่วมกับ SEPARABLE BRASS WELL โดยมี CONNECTION แบบ SWIVEL NUT หรือแบบ UNION, คำ WELLS จะต้องมีความยาวสกรีนเข้าไปในท่อหน้าตัวอย่างน้อย 50 มิลลิเมตร (2 นิ้ว) สำหรับการติดตั้งกับท่อนำอากาศได้กาวให้ราย ทองโดยใช้ตามที่บริษัทต้องจำ ประกอบในเรื่องคิดตั้ง สำเนาที่ติดตั้งให้ถูกอยู่ในระดับเสียความ ดูยน้อยกว่า 1.50 เมตรที่ลาด

12.3 สำหรับเครื่องเป็นแบบมีพอร์ทใหญ่ (AHU) ต้องติดตั้ง THERMOMETER WELL ไว้ที่หน้าท่อเข้า-ออกทุกเครื่อง และมี PLUG ลูกตัว พร้อมทั้งจัดหาเทอร์โมมิเตอร์อย่างน้อย 2 ชุด มอบให้เจ้าของ โครงการไว้ในรัศมีส่งมอบงาน (ไม่จ่ายเป็นต้องติดตั้ง THERMOMETER ที่ AHU ทุกเครื่อง)

13. WATER FLOW SWITCH

13.1 ติดตั้ง WATER FLOW SWITCH ที่ต่อเนื่องท่อเข้าออกเครื่อง CHILLER ทุกเครื่อง ห้างหุ้นเป็น และท่อน้ำคอนแทคเซอร์ เพื่อควบคุมการทำงานของ CHILLER เมื่อมีน้ำเข้า CHILLER

13.2 WATER FLOW SWITCH ต้องประกอบด้วยคำว่าัง ที่ควบคุมการทำงาน SWITCH เป็นแบบ SINGLE POLE-DOUBLE THROW พร้อมฝักประกอบเป็นฝักสั้น PADDLE ทำด้วย BERYLLIUM COPPER มีความหมายเหมือนที่ใช้งานสำหรับท่อน้ำขนาดต่าง ๆ

13.3 ต้องได้รับการรับรองมาตรฐาน จาก UL(UNDERWRITERS LABORATORIES)

13.4 FLOW SWITCH จะต้องเป็นแบบที่ห้องน้ำ และกัน歼
หมวดที่ 14
แนวทางทุณียบารมี

1. ข้อกำหนดทั่วไป

1.1 ห้องน้ำมีต้องได้รับการทดสอบอย่างไร และได้รับความร้อนโดยเรียงร้อยก่อนทุ่มถนน
1.2 การทุ่มถนนท้องน้ำเป็นที่ต้องทุ่มถนนอย่างเท่า แม้ในบางที่ท่อถังไหล ที่ห้องสมุดท่อเชื้อ พื้นหลังแปลงน้ำด่างต่างๆ บนจะต้องทุ่มให้แน่นดินโดยไม่มีใครออกจากซ้ายอยู่ภายใน
1.3 แนวทางที่ใช้ทุ่มอุปกรณ์ต่างๆ ที่ต้องในการทิ้งน้ำเป็น ที่จะมีเหตุที่เกิดขึ้นต่างๆ ของ COLD SURFACE ให้ผู้ที่ทุ่มถนนและมีความหนาแน่นได้ชัดเจนและผู้ทุ่มถนน

2. แนวทางทุ่มน้ำหนักและท่อน้ำ

2.1 แนวทางน้ำหนักท่อน้ำหนัก ให้ใช้แบบ CLOSED CELL ELASTOMERIC INSULATION ชนิด ไม่มีความไฟฟ้า (SELF EXTINGUISHING) CELL STRUCTURE เบื้องหน้า CLOSED CELL มีคำ สั่งเพิ่มประสิทธิ์การนำความร้อนไม่เกิน 0.28 BTU. IN SQ.FT. HR. 98 F ที่ 759 F MEAN TEMP. ความ ทนทานแพ้ไม่ต่ำกว่า 4 ปีผ่านดู. พื้นที่ความหนาแน่นของถนน ให้ผู้จัดทำข้อ 2.3
2.2 แนวทางน้ำหนักอุปกรณ์ (CONDENSATE DRAIN) สำหรับเก็บน้ำต่างๆ จะต้องใช้มาตรฐานความหนา ไม่น้อยกว่า 1/2 นิ้ว ทุ่มน้ำหนักท่อน้ำหนัก และแนวตั้งท่อน้ำหนัก
2.3 แนวทางความหนาแน่นของถนนที่ใช้ผู้ทุ่มถนนต่างๆ จะต้องมีความหนาไม่น้อยกว่าที่ระบุไว้ดังนี้

<table>
<thead>
<tr>
<th>ขนาดท่อน้ำ</th>
<th>ขนาดความหนาแน่นของถนน</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 มม. (1 1/2 นิ้ว) และเกียวกว่า</td>
<td>25 มม. (1 นิ้ว)</td>
</tr>
<tr>
<td>50 มม. (2 นิ้ว) - 100 มม. (4 นิ้ว)</td>
<td>38 มม. (1 1/2 นิ้ว)</td>
</tr>
<tr>
<td>126 มม. (5 นิ้ว) และเกียวกว่า</td>
<td>50 มม. (2 นิ้ว)</td>
</tr>
</tbody>
</table>

แนวทางที่เลือกใช้อาจเป็นแบบ PREFORMED TUBE หรือแบบ SHEET โดยเลือกใช้ตามความ เหมาะสมของความหนาแน่นของถนนและระยะสปี้ แต่จะต้องเป็นชนิดและมีขนาดที่เหมาะสมกับงาน ซึ่งระยะสปี้ ของถนนจะต้องไม่เป็นระยะห่างของกันและกันซึ่งกันได้ ซึ่งระยะสปี้จะต้องไม่เป็นระยะสปี้ที่ต่ำกว่า 2 นิ้ว ให้ผู้ทุ่มถนนต้องใช้ข้อ 2.3 โดยให้ มีความเหมาะสมตามข้อที่กำหนด และให้ข้อของความหนาแน่นที่เหมาะสมกับระยะสปี้ของถนน และระยะสปี้

2.4 ก่อนการทุ่มถนน จะต้องทำความสะอาดให้มากของผิวท่อน้ำอย่างดี ไม่มีความมันเป็นผนูน สะเก็ด วัสดุ ที่ก่อสร้างที่จะทำให้ผิวท่อน้ำดี ระยะขี้ผึ้งไม่เป็นระดับที่ถูกต้องให้เรียบ

2.5 ให้การความสปี้ผู้ทุ่มถนนต้องทำให้ผิวท่อน้ำสะอาด ระยะสปี้ที่เหมาะสมกับความหนาแน่นของถนน ให้สม่ำเสมอไม่ระดับสปี้ต่ำ จะต้องได้แน่นตามที่กำหนดและมีความสม่ำเสมอของถนน ติดให้สม่ำเสมอที่มีระยะสปี้ต่ำ จะต้องได้แน่นที่มีระยะสปี้ต่ำหรือระดับ แนวที่ผู้ทุ่มตัวอุปกรณ์ต่างๆ จะทำให้ได้ผลความสม่ำเสมอ ผิวที่ผู้ทุ่มตัวอุปกรณ์ต่างๆ ให้มีความสม่ำเสมอที่ผู้ทุ่มตัวอุปกรณ์ที่มี
ลำนาภีให้สังกัดต่อตามแนวแนวนิยมกัน ขนาดความหนา 1/8" กว้าง 2" ที่ค่อยๆ เทลงไปในความยาวเท่ากัน

2.6 แนวที่หุ้มแล้วจะต้องมีความตื้นพอดี ไม่เคยหนาหรือดันจนล้มเหลวได้ แนวแบบ PREFORMED TUBE ที่ใช้ ต้องมีขนาดที่เหมาะสมกับตัวท่ออย่างเหมาะสม จะต้องทำการยืดแนวให้สอดกับตัวท่อโดยตรง

2.7 ตรวจสัมผัสของรูปท่อที่แนวนั้น ให้ใช้ไม่เกินขั้นสูงสุดก่อนส่วนแล้วของตัวท่อความหนาเท่ากับแนวที่ให้ที่รูบรอน ความยาวของช่วงไม่ต่ำกว่าแนวไปเกิน 15 ซม. หุ้มห่อมไม่ได้ผนังแน่น CLOSED CELL ถักขึ้นเหนือโดยรอบ ความหนา 1/2 นิ้ว ความยาวตามแนวทำให้เลย ส่วนที่เป็นไม้ไม่ขึ้นและ 30 มม. รองรับขึ้นให้ดีและแน่นดังกล่าว ไม่น้อยกว่า 1.5 มม. ผิวแน่นตรง ตรงกับหลุม ความยาวตามแนวทำให้กระชับความร่างของพื้นที่หุ้มเรียบ

2.8 แนวที่กินร่องไว้ไม่ถูกต้อง เสียหรือ ติดขาด หรือหลุด หรือที่มีสิ่งกีดกันไม่อนุญาตให้ใช้แนวที่กินร่องโดยตรงต่อ แนวที่หุ้มที่อยู่ในระยะห่างอย่างใหญ่ ไม่ถูกต้องโดยตรง ฐานที่สูงไม่เหมาะสมกับยิ่งขึ้นกว่า 5% ของพื้นที่แนวกลวงเท่ากับอัตราส่วนที่ผนังแน่น

2.9 ท่อที่หุ้มยังขึ้นแน่น CLOSED CELL ELASTOMERIC หากต้องดักต่อน้ำออกทางข่างหรือได้หลุดกล่าว ที่มีความรุนแรง จะต้องหุ้มที่กินแนวแน่นเพียง 1 นิ้ว หลังจากนั้นจึงหุ้มด้วยผนังฉนวนมีแนวอักษรเหนือ (ALUMINUM JACKET) ความหนาของฉนวนมีแนวกว้างกว่า NO.22 GAUGE การหุ้มด้วยฉนวนมีแนว ให้ใช้ลดการดักต่อน้ำออกทางการที่ถูกต้องแล้วเท่านั้น

2.10 ดังนั้นผู้ใช้ในส่วนที่อยู่ในห้องเครื่องแข็งเหลอร์ที่มีท่อ การรักษาแนว CLOSED CELL พื้นผิว สิ่งที่ต้องใช้เป็นชีพแพนิส์ที่ใช้รากขึ้น ไม่แตกหรือหลุดเมื่อมีการยืดเหยียดผนังของแนว ส่วนที่ใช้ให้ซุ่มในแนวการใช้
หมวดที่ 15
ระบบควบคุมอัตโนมัติ (AUTOMATIC CONTROL SYSTEM)

1. ข้อกำหนดทั่วไป

1.1 ระบบควบคุมอัตโนมัติ หมายถึงระบบควบคุมที่ใช้กับระบบการควบคุมอุณหภูมิของเครื่องปรับอากาศ (AUTOMATIC TEMPERATURE CONTROL) ระบบควบคุมสำหรับพัดลม ระบบน้ำเย็น (CHILLED WATER) ของตู้ ทางเข้าและระบบควบคุมอัตโนมัติของอุปกรณ์ที่ใช้กับวาด หรือโคมไฟ และเพื่อใช้ในการควบคุมการทำงานของอุปกรณ์ต่างๆ ให้ได้ตามความต้องการที่จะต้องใช้ ไม่ว่าในแบบแผนและรายการจะได้กับระบบอุปกรณ์ที่จำเป็นสำหรับระบบควบคุมการทำงานทั้งหมดต่างๆ หรือไม่ก็ตาม การเลือกอุปกรณ์ควบคุมต่างๆ จะต้องเลือกให้เหมาะสมกับการทำงานของอุปกรณ์ติดตั้ง

1.2 อุปกรณ์ควบคุมที่ต้องการ จะต้องมีผลิตภัณฑ์ที่มีระบบการติดตั้ง ซึ่งมาจากประเทศอังกฤษ สหรัฐอเมริกา หรือประเทศอื่นๆ ที่ได้มาตรฐานเท่ากับหรือมากกว่า ซึ่งจะต้องมีการกำหนดข้อตกลงการใช้ในประเทศและมีผลิตภัณฑ์ของอุปกรณ์ พร้อมสำหรับการเปลี่ยนทดแทนได้ทันที

1.3 ผู้รับจ้างต้องจะเปลี่ยนของอุปกรณ์ในระบบควบคุมอัตโนมัติ พร้อมที่จะควบคุมการทำงาน ในการเลือกอุปกรณ์แบบแสดงแนวทางจัดแผนงานและแสดงการติดตั้งอุปกรณ์ที่ควรควบคุมเรื่องของการจัดการดังกล่าว

1.4 บุคคลากรที่ใช้งานต้องติดตั้งระบบควบคุมอัตโนมัติ ต้องเป็นอาจารย์ที่ได้รับการฝึกอบรมและมีประสบการณ์ในการติดตั้งระบบควบคุมอัตโนมัติ และอยู่ภายใต้ความควบคุมของวิศวกรผู้ชำนาญงานด้านนี้

1.5 ระบบควบคุมเป็นแบบ ELECTRONIC ทั้งหมด

2. วาล์วอัตโนมัติ (AUTOMATIC VALVES)

2.1 2-WAY MOTORIZED CONTROL VALVE (ON/OFF FUNCTION) ใช้สำหรับเครื่องเปิดไอเย็น ขนาดเล็ก ตัววัลว์ ทำด้วยเหล็กหรือบอร์ช ข้อต่อแบบ FLARE หรือ SWEAT หรือ SCREWED NORMALLY CLOSED

2.2 2-WAY MOTORIZED PROPORTIONAL CONTROL VALVE ใช้สำหรับเครื่องเปิดไอเย็น ขนาดเล็กและขนาดใหญ่และตามที่ระบุไว้ในแบบรายละเอียดที่ตัดแต่ง 15 มม. (1/2 นิ้ว) ถึง 50 มม. (2 นิ้ว) ตัววัลว์ทำด้วยเหล็กข้อต่อกลีบ ขนาดเส้นผ่าศูนย์กลาง 65 มม. (2 1/2 นิ้ว) และใหญ่กว่าตัววัลว์ ทำด้วยเหล็ก ข้อต่อแบบกลีบเหล็ก ขนาดเส้นผ่าศูนย์กลาง ขนาดข้อต่อกลีบ ตามที่ระบุไว้ในแบบรายละเอียด ตัววัลว์เป็นแบบ GLOBE หรือ PLUG PATTERN ตัววัลว์ต้องประกอบด้วย LINKAGE และ MOTOR ACTUATOR แบบ SPRING RETURN หรือ ELECTRIC RETURN พร้อมกับมี VALVE POSITION INDICATOR นอกจากนี้ยังมี VALVE POSITION INDICATOR สำหรับอุปกรณ์ที่มี MANUAL CLUTCH สามารถปิดหรือเปิดได้ในที่ต่ำเตี้ยได้ที่ผ่านไปได้ ตัววัลว์ต้องเป็นแบบ NORMALLY CLOSE ขณะที่ไม่มีเข้า MOTOR วาล์วต้องปิดเป็นตัวแหวนเปิด ไม่ให้ไหลผ่านอย่างเดียว
2.3 วัดทุกครั้ง จะต้องทำความสะอาดใช้งานได้ไม่น้อยกว่า 200 ประตูต่อตารางนิ้ว และเลื่อนขณะสำหรับการใช้งานที่ FLOW RATE ที่กำหนดโดยมีความตันแสดงความรายไม่เกิน 5 PSI

2.4 ELECTRIC ACTUATOR
- ELECTRIC ACTUATOR สำหรับ 2 WAY ON/OFF VALVE ต้องเป็น TWO POSITION OPERATION เหมาะสมกับระบบไฟ 220 VAC หรือ 24 AC และออกแบบให้สามารถกด ออกแบบได้ยาวง่าย
- สำหรับ 2 WAY, 3 WAY PROPORTIONAL VALVE ต้องเป็นแบบ PROPORTIONAL OR INCREMENTAL CONTROL และเป็นแบบ ELECTRIC RETURN เหมาะสำหรับระบบไฟ 24 AC, VALVE LINKAGE จะต้องเลือกให้เหมาะสมกับ CONTROL VALVE แต่ละตัว การเลือก
- ขนาดของ ACTUATOR จะต้องเลือกขนาดที่มี TORQUE ที่เหมาะสมกับ VALVE แต่ละชุด
- ตัว ACTUATOR แต่ละตัวจะต้องมี VALVE POSITION INDICATOR เพื่อทำการแทน
- การปิดเปิด CONTROL VALVE ด้วย

3. อุปกรณ์ควบคุมอุณหภูมิ (THERMOSTAT)

3.1 เปลี่ยนแบบ ROOM THERMOSTAT สำหรับเครื่องเปลี่ยนแบบนี้จะมีการควบคุม
- ปรับความร้อนของพัดลม 3 ระดับ, ปุ่มควบคุมอุณหภูมิ และ THERMOMETER ออกแบบเป็นพื้นที่
- เดิม วัดอุณหภูมิเครื่องใช้ระบบไฟ 24 VAC TEMPERATURE SENSOR เป็น THERMISTER การควบคุม
- เป็นแบบ ON/OFF หรือ PROPORTIONAL หรือ PROPORTIONAL INTEGRAL ตามที่กำหนด

3.2 เปลี่ยนแบบ ROOM THERMOSTAT สำหรับเครื่องเปลี่ยนแบบนี้ จะมีกลไกและ
- เช่นเดียวกับ แบบนี้จะใช้กับเครื่องเปลี่ยนแบบนี้จะมี FAN SPEED SWITCH

3.3 AVERAGING TEMPERATURE SENSOR สำหรับอุณหภูมิของอากาศภายในห้อง ซึ่ง
- ประกอบด้วยอุณหภูมิและความยาวไม่เกินกว่า 3.0 เมตร ขนาดอุณหภูมิภายในห้อง เพื่อให้
- อุณหภูมิเปลี่ยนของอากาศภายในห้องมีพื้นที่ห้าตัวของปริมาณที่ติดต่อกัน เพื่อส่งบัญชาไปยัง
- CONTROLLER

3.4 DUCT MOUNTED TEMPERATURE SENSOR สำหรับอุณหภูมิของอากาศภายในห้อง มี
- ลักษณะเป็นพื้นที่ อยู่ใน TEMPERATURE SENSOR แบบ THERMISTER คิดตั้งอยู่ที่ฉาบภูมิ
- เชื่อมต่อกับอุณหภูมิของอากาศภายในห้อง เพื่อให้ที่ติดต่อกัน เพื่อส่งบัญชาไปยัง CONTROLLER

3.5 การรักษาอุณหภูมิในแบบที่ระบุกัน สำหรับควบคุมอุณหภูมิเปิดพัดลมในแบบ SPACE
- THERMOSTAT โดยตั้ง SET POINT ที่ 30-35°C การเลือกช่วงการทำงานของ THERMOSTAT
- จะต้องเลือกให้มี SET POINT อยู่ในช่วงกลางของช่วงการทำงาน

4. PRESSURE DIFFERENTIAL RELIEF VALVE

4.1 เป็นอุปกรณ์สำหรับควบคุมการ เปิด-ปิด BYPASS VALVE ในกรณีที่ PRESSURE DIFFERENT
- ระหว่าง Input หรือ SUPPLY และ RETURN ดูเท่าที่ปรับค่าไว้
4.2 ชุดของวัสดุประกอบด้วย MAIN VALVE, RELIEF DIFFERENTIAL CONTROL VALVE, NEEDLE VALVE และ PILOT TUBE ประกอบเป็นชุดจากโรงงานผู้ผลิตหรือผู้ขาย

4.3 ชุด MAIN VALVE เป็นแบบ SPRING LOADED DIAPHRAGM TYPE. ตัววัสดุ (VALVE BODY) ทำด้วยเหล็กกลวง (CAST IRON), VALVE SEAT ทำด้วย BRONZE, STEM และ SPRING ทำด้วย STAINLESS STEEL, DIAPHRAGM ทำด้วย NYLON REINFORCED BUNA-IN ตัววัสดุต่อแบบหน้าแผ่น สามารถทนความดันใช้งานได้ไม่เกินกว่า 200 ปอนด์/คร.นิ้ว
หมวดที่ 16 ระบบไฟฟ้า

1. ความต้องการทั่วไป

ข้อกำหนดนี้ครอบคลุมถึงความต้องการด้านคุณสมบัติและการติดตั้งวัสดุ อุปกรณ์ ระบบไฟฟ้าทั่วไปและไฟฟ้าควบคุม ซึ่งเป็นข้อบ่งชี้สำหรับที่ก่อสร้างงานทั่วทั้งหมด ทั้งนี้เพื่อให้ความปลอดภัยกับข้อกำหนดของวัสดุ อุปกรณ์ และการติดตั้งระบบไฟฟ้าทั่วไปในโครงการ

2. มาตรฐานวัสดุ อุปกรณ์และการติดตั้ง

ถ้ามีโอกาสให้เป็นอย่างอื่น มาตรฐานของเครื่อง วัสดุ อุปกรณ์ การประกอบและการติดตั้งต้องถือตามมาตรฐานของสถาปัตยกรรม (แบบ)
ก. สำนักงานมาตรฐานสินค้าของอุตสาหกรรม (โมก)
ข. กฏหมายและประกาศกระทรวงมหาดไทย
ค. มาตรฐานอุตสาหกรรมแห่งประเทศไทย (ในระบบมาตรฐานสากล)
ง. มาตรฐานการผลิตแห่งชาติ
จ. กฏหมายและระเบียบการไฟฟ้าแห่งประเทศไทย ได้แก่การไฟฟ้านครหลวง หรือการไฟฟ้านครบาลและสิ่งแวดล้อม
ฉ. ANSI : AMERICAN NATIONAL STANDARD INSTITUTE
ซ. ASTM : AMERICAN SOCIETY OF TESTING MATERIAL
ฌ. BS : BRITISH STANDARD
ญ. DIN : DEUTSCHE INDUSTRIENORMEN
ฎ. IEC : INTERNATIONAL ELECTROTECHNICAL COMMISSION
ฏ. JIS : JAPANESE INDUSTRIAL STANDARD
ฐ. NEC : NATIONAL ELECTRICAL CODE
ฑ. NEMA : NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION
ฒ. NESC : NATIONAL ELECTRICAL SAFETY CODE
ธ. NFPA : NATIONAL FIRE PROTECTION ASSOCIATION
ฏ. UL : UNDERWRITERS LABORATORIES, INC.
ฐ. VDE : VERBAND DEUTSCHER ELECTROTECHNIKER

3. ระบบแรงดันไฟฟ้าและเทียบ

3.1 ถ้ามีดินที่คงที่เป็นอย่างอื่น ระบบไฟฟ้าในโครงการนี้เป็นระบบ 415/240 โวลต์, 3- เฟส, 4-สาย, 50 เฮิร์ตซ์, Y-CONNECTION, SOLID GROUND
3.2 กำหนดให้ใช้รหัสสีของ BUSBAR, ของสายไฟฟ้าเป็นไปตามข้อกำหนดต่อไปนี้-
ก. สีแดง สำหรับเฟส A (R)
ข. สีเหลือง สำหรับเฟส B (S)
3.3 ลูปกระแสเสียไฟฟ้าต่างๆ ต้องมีหัวตัดต่อไว้ เพื่อป้องกันการตรวจพบและช่วยป้องกันภัยให้ได้ จึงกำหนดให้หัวตัดต่อไว้ เช่น
ก. สีแดง สำหรับอุปกรณ์ติดสายไฟฟ้าก้าง
ข. สีเขียว สำหรับอุปกรณ์ติดสายไฟฟ้าควบคุม

โดยให้หัวตัดต่อที่หัวต่อสายไฟฟ้าทุกๆ ระวางไม่เกิน 1 เมตร หรือหัวต่อที่อุปกรณ์ยึดต่อ (CLAMP)
ส่วนกล่องต่อสาย กล่องพักสาย ให้ทำสีน้ำเงินในกล่องและจำกัดต่อกันๆ กล่อง

4. การต้องดิน

4.1 วัสดุ อุปกรณ์ไฟฟ้าทนไฟที่มีส่วนต่อต้น หรือโครงสร้างภายในแยกเป็นสองด้าน ต้องต่อต้นดินตามกำหนดในมาตรฐานดังต่อไปนี้-
ก. ประกาศกระทรวงมหาดไทยเรื่องความปลอดภัยกับไฟฟ้า นโยบาย 6 สายดิน” และการต้องดิน
ข. มาตรฐานที่ความปลอดภัยทางไฟฟ้านำร่องกล้าน์ทางการ “TSES 24-1984” การต้องดิน
ค. NATIONAL ELECTRICAL CODE (NEC) ARTICLE 250
ง. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NO. 78

4.2 สายสุทธิไฟฟ้าสำหรับการต้องดิน ให้เป็นสายสูตต่อต้น ขึ้นมาจากกลบเข้าของอุปกรณ์ติดต่
วงจรไฟฟ้าของแต่ละวงจร หรืออุปกรณ์ติดต่อกันโดยมีความสูตต่อต้นจากกำหนดในตาราง
<table>
<thead>
<tr>
<th>ขนาดสายดินสำหรับต่อส่วนเหลือที่เป็นโลหะของอุปกรณ์ไฟฟ้าคงเดิม</th>
<th>ขนาดสายดิน (ตารางมิลลิเมตร)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ไม่เกิน.............แอกแปร์)</td>
<td>ตัวนำทองแดง</td>
</tr>
<tr>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>30 ถึง 60</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>16</td>
</tr>
<tr>
<td>400</td>
<td>35</td>
</tr>
<tr>
<td>600</td>
<td>50</td>
</tr>
<tr>
<td>800 ถึง 1,000</td>
<td>70</td>
</tr>
<tr>
<td>1,200</td>
<td>95</td>
</tr>
<tr>
<td>1,600</td>
<td>120</td>
</tr>
<tr>
<td>2,000</td>
<td>150</td>
</tr>
<tr>
<td>2,500</td>
<td>185</td>
</tr>
<tr>
<td>3,000</td>
<td>240</td>
</tr>
<tr>
<td>4,000</td>
<td>300</td>
</tr>
<tr>
<td>5,000</td>
<td>400</td>
</tr>
<tr>
<td>6,000</td>
<td>500</td>
</tr>
</tbody>
</table>

4.3 วัสดุ-อุปกรณ์อื่นๆ ที่เป็นโลหะ เช่น ท่อเหล็ก ต้องต่อขัดกันระบบสายดินของอาคาร (BUILDING GROUND) หรือ สายดินของระบบป้องกันไฟฟ้า ตัวนำสายด้านท้องเหล็กไม่น้อยกว่า 35 ตร. มม.

5. การติดสายไฟฟ้า

ต้องใช้ระบุให้เป็นอย่างถูกต้อง ให้ติดสายไฟฟ้าต่อกัน และสายไฟฟ้าควบคุมในอุปกรณ์ติดสายไฟฟ้า ที่เหมาะสมเพื่อการส่งในตอนวิกฤตหรือฉุกเฉิน หรือติดโดยรอบไม่เกินจากพื้นและตัวกรณี สำหรับการใช้สายไฟฟ้า และอุปกรณ์ติดสายไฟฟ้า ให้เป็นไปตามที่ระบุในหมวดต่อๆ ไป

6. แบบควบคุม

แบบควบคุมอุปกรณ์ไฟฟ้าต่างๆ ที่เกี่ยวข้อง ให้เป็นไปตามข้อกำหนดในหมวดต่อๆ ไป

7. การป้องกันไฟและควันลาส

7.1 การป้องกันไฟและควันลาสต้องเป็นไปตาม NEC, ARTICLE 300-21 และ ASTM

7.2 อุปกรณ์หรือวัสดุ

ก. อุปกรณ์หรือวัสดุ ซึ่งใช้ป้องกันไฟและควันลาส ต้องเป็นอุปกรณ์หรือวัสดุที่ UL รับรอง

[ลายเซ็น]
ข. อุปกรณ์หรือวัสดุดังกล่าว ต้องป้องกันให้ได้อย่างน้อย 2 ชั้นขึ้นไป
c. อุปกรณ์หรือวัสดุดังกล่าว ต้องไม่เป็นพิษและมีพิษตั้งหรือขณะเกิดเพลิงไหม้
ง. สามารถครอบคลุมได้สำหรับการป้องกันที่มีการเปลี่ยนแปลงภูมิ
จ. ทนต่อการสั้นและเที่ยงได้ดี
ฉ. ฟิล์ค้าง่าย
ช. อุปกรณ์หรือวัสดุที่ป้องกันไฟและควันไฟ ต้องไม่ล่าสุดได้รับไม่เกิน 10 วันก่อนหรือหลังเพลิงไหม้
7.3 ใช้ติดตั้งอุปกรณ์หรือวัสดุป้องกันไฟและควันไฟตามคำแนะนำดังต่อไปนี้-
ก. ช่องเปิดทุกช่อง ไม่ว่าจะอยู่ที่ใดของแผนที่ หรือใน ซึ่งได้เตรียมไว้สำหรับการใช้งานได้ตลอดระบบ
ไฟฟ้า
ข. ช่องเปิดหรือช่องเล็ก (SLEEVE) ที่เตรียมไว้สำหรับติดตั้งระบบไฟฟ้าในอนาคต
ค. ช่องเปิดหรือช่องเล็ก (SLEEVE) ที่ใช้สำหรับไฟฟ้าหรือห้องควบคุมไฟฟ้าที่มีช่องวางอยู่ แม่น้ำอย่าง
ช่องเล็กน้อยก็ตาม
ง. รายใหญ่ห้องควบคุมไฟฟ้าที่วางตู้คอนเน็คเจอร์ แขนคอนเน็คเจอร์ ซึ่งเป็นแนวหน้าไฟ เพื่อป้องกันไฟ
และการรั่วซึมของห้องควบคุมไฟฟ้า
7.4 กระบวนการติดตั้ง ผู้บริหารจ้างต้องเสนอขออนุมัติจากผู้มีอำนาจอนุมัติ

8. การตรวจสอบและทดสอบระบบที่ไฟฟ้า

การตรวจสอบและทดสอบระบบที่ไฟฟ้า ให้กระทำควบคุมดังต่อไปนี้-

8.1 ตรวจสอบความดันสูงของเนื้อเส้นสายไฟฟ้าและอุปกรณ์ที่ต่อกับ
8.2 ตรวจสอบความดันสูงของแรงดันในอุปกรณ์ที่ต่อกับ ให้แน่ใจว่ามีความต้องเนื่องทาง
ไฟฟ้าของการต่อต่อกัน
8.3 ตรวจสอบและทดสอบการทำงานของระบบที่ควบคุมต่างๆ
8.4 ตรวจสอบและทดสอบการทำงานของอุปกรณ์ต่างๆ
8.5 จัดทำรายงานทดสอบต่างๆ อย่างครบถ้วน
หมวดที่ 17
อุปกรณ์เดินสายไฟฟ้า

1. ความต้องการทั่วไป

เพื่อให้การใช้งาน และการคล้องตอกุปกรณ์เดินสายไฟฟ้า (สายไฟฟ้า ให้รวมถึงสายสัญญาณทางไฟฟ้า - สื่อสารต่าง ๆ เช่น สายโทรศัพท์ สัญญาณวิทยุ-โทรทัศน์ สัญญาณแสงแจ้งเตือน เป็นต้น) เป็นไปด้วยความเรียบร้อยและถูกต้องตามมาตรฐาน จึงกำหนดให้การจัดทำสวิตซ์ อุปกรณ์ และการติดตั้งเป็นไปตามข้อกำหนดดังรายละเอียดต่อไปนี้:

2. ท่อร้อยสายไฟฟ้า

ท่อร้อยสายไฟฟ้าโดยปกติเป็น 4 ชั้น ตามลักษณะและความเหมาะสมในการใช้งาน โดยทั่วไปติดตั้งต่อเป็นท่อหลายชั้นตามมาตรฐาน ANSI ที่เป็นที่ยอมรับโดยวิธี HOT-DIP GALVANIZED เชื่อมต่อที่เพื่อใช้ราบรื่นสายไฟฟ้าโดยเฉพาะต้องต่อไปนี้:

2.1 ท่อโลหะติดตั้ง (ELECTRICAL METALLIC TUBING : EMT) มีลักษณะดังต่อไปนี้ ถ้าใช้กันระหว่างระยะตั้งต่อกันอย่างน้อยระยะกว่า 12 มิลลิเมตร หรือติดตั้งใช้งานในระยะตั้งต่อกันในระยะนั้นไม่ถึง 12 มิลลิเมตร สามารถใช้ได้ การติดตั้งใช้งานให้เป็นไปตามที่กำหนดใน NEC ARTICLE 348

2.2 ท่อโลหะหุ้มพบร้อยสาย (INTERMEDIATE METAL CONDUIT : IMC) มีลักษณะดังนี้ ติดต่อกันอย่างน้อยระยะกว่า 12 มิลลิเมตร เช่นเดียวกับท่อโลหะติดตั้ง และติดตั้งในระยะนี้ สามารถใช้ได้ แต่ไม่ได้ยินเสียงโดยตรงและไม่ใช้ในสถานที่ที่ขันต่ำกว่ากันทุกๆ 180 องศา ให้เป็นไปตามที่กำหนดใน NEC ARTICLE 345

2.3 ท่อโลหะหุ้มพบร้อยสาย (RIGID STEEL CONDUIT : RSC) สามารถใช้แทนที่ EMT และ IMC และให้ทุกประเภทและใช้ในสถานที่ที่ขันต่ำที่มีต่อตอกันโดยตรงสามารถใช้ใน NEC ARTICLE 346

2.4 ท่อยืด (FLEXIBLE METAL CONDUIT) เป็นท่อโลหะที่ผู้ผลิตสายไฟฟ้าใช้ยืดอุปกรณ์ หรือเครื่องไฟฟ้าที่มี หรืออาจมีการยืดและเก็บไว้ได้ หรืออุปกรณ์ที่อาจมีการเคลื่อนย้ายได้บ่อย เช่น มอเตอร์ หรือผู้ผลิตสายไฟ สามารถใช้ได้ แต่ต้องท่อที่ใช้ในสถานที่ขันและแผ่นกากบาทใช้ต่อท่อหุ้มพบร้อยสาย สำหรับการติดตั้งใช้งานให้เป็นไปตามข้อกำหนดใน NEC ARTICLE 350

2.5 อุปกรณ์ประกอบการติดตั้งท่อได้แก่ COUPLING, CONNECTOR, LOCK NUT, BUSHING และ SERVICE ENTRANCE CAP แห่ง ๆ ต้องเหมาะสมกับสายและสถานที่ใช้งาน CONNECTOR

2.6 การติดตั้งท่อร้อยสายไฟฟ้า ต้องเป็นไปตามข้อกำหนดดังนี้:

ก. ให้ทำตามมาตรฐานที่กำหนดในและหมายเหตุในวรรคหนึ่ง

ข. การติดตั้งท่อต้องไม่ทำให้เกิดการรูปทรง และภูมิที่เป็นไปตามข้อกำหนดใน NEC

ค. ต้องมีการติดตั้งกันขัดขวางสายไฟฟ้าในระยะต่าง ๆ ที่กำหนดไว้ไม่น้อยกว่า 150 เยน

ง. ต้องต่อกันอย่างต่อเนื่องและระยะต่อติดตั้งต้องเป็นไปตามที่กำหนดไว้ในข้อกำหนดใน NEC ARTICLE 500 ต้องมีอุปกรณ์ประคับเพื่อเหมาะสมกับต่อท่อและสถานที่
3. **CABLE TRAY**

3.1 **CABLE TRAY** ต้องมีถังชิ้นจากเหล็กแผ่นที่ผ่านการป้องกันสนิมโดยวิธีชู GALVANIZED โดยที่เหล็กชิ้นด้านข้างต้องมีความหนาไม่น้อยกว่า 2 มิลลิเมตร และฟันเป็นแผ่นเหล็กแผ่นไม่น้อยกว่า 1.5 มิลลิเมตร ฟันเป็นดอกพู่กุ้น มีช่องจางระยะยาวที่อย่างต่ำ

3.2 **CABLE TRAY** ชนิด LADDER ต้องมีลูกขั้นบุกๆ ระยะ 30 เข็มทิศเมตร หรือน้อยกว่า

3.3 การติดตั้งและใช้งาน **CABLE TRAY** ต้องเป็นไปตามกำหนดใน NEC ARTICLE 318 และต้องยึดกับโครงสร้างอาคารทุกๆ ระยะไม่เกิน 1.50 เมตร

4. **WIREWAY**

4.1 **WIREWAY** ต้องมีชิ้นส่วนจากเหล็กแผ่นที่มีความหนาไม่น้อยกว่า 1.2 มิลลิเมตร หรือผ่าครอบปิดผ่านการป้องกันสนิมโดยวิธีชู GALVANIZED

4.2 การติดตั้งและใช้งาน **WIREWAY** ต้องเป็นไปตาม NEC ARTICLE 300 และ ARTICLE 362 และต้องยึดกับโครงสร้างอาคารทุกๆ ระยะไม่เกิน 1.50 เมตร

5. กล่องต่อสาย

กล่องต่อสายในที่นี้ ให้รวมถึงกล่องวิทยุ กล่องต่อสาย (JUNCTION BOX) กล่องพักสายหรือกล่องต่อสาย (PULL BOX) ตามกำหนดใน NEC ARTICLE 370 ระยะยืดหยุ่นของกล่องต่อสายต้องเป็นไปตามกำหนดต่อไปนี้-

5.1 กล่องต่อสายมาตรฐานโดยทั่วไป ต้องเป็นเหล็กที่มีความหนาไม่น้อยกว่า 1.2 มิลลิเมตร ผ่านการป้องกันสนิมโดยวิธีชู GALVANIZED และต้องยึดติดกับเหล็กต่อสาย ระยะไม่น้อยกว่า 2.4 มิลลิเมตร

5.2 กล่องต่อสายที่มีปริมาณใหญ่กว่า 100 ลูปมากกว่านี้ ต้องมีชิ้นส่วนจากเหล็กที่มีความหนาไม่น้อยกว่า 1.5 มิลลิเมตร หรือผ่าครอบปิดผ่านการป้องกันสนิมโดยวิธีชู GALVANIZED และต้องยึดติดกับเหล็กต่อสาย ระยะไม่น้อยกว่า 2.4 มิลลิเมตร

5.3 กล่องต่อสายชนิดกับระบบที่จัดให้ในสถานที่อื่นเกิดอันตรายต่างๆ ให้ตามที่ระบุใน NEC ARTICLE 500 ต้องมีผ่าครอบปิดผ่านการป้องกันสนิมโดยวิธีชู UL(UNDERWRITERS LABORATORY)

5.4 ขนาดของกล่องต่อสาย ซึ่งอยู่ภายใน จำนวนของสายไฟที่ผ่านเข้าและออกจากกล่องต่างๆ และชั้นที่ใช้ต่อ จำนวนห้องอยู่ภายในหรือภายนอกตัวอาคารอื่นๆ ที่มีต่อสายที่ใช้รับมือการใส่ของสายตามกำหนดใน NEC ARTICLE 373

5.5 กล่องต่อสายทุกชนิดและทุกขนาด ต้องมีผ่าตัดที่เหมาะสม
5.6 การติดต่อกล่องต่อสาย ต้องเปิดแนกับโครงสร้างอาคารหรือโครงสร้างภายนอก ๆ และกล่องต่อสาย
สำหรับแต่ละระบบ ให้มีรหัสสีประจำและป้ายสีถังกล่องให้เห็นได้ชัดเจน ตำแหน่งของกล่องต่อสาย
ต้องติดตั้งอยู่ในที่ชัดเจนและที่เหมาะสมได้ระดับ

6. การติดตั้ง

ถึงแม้ว่าข้อกำหนดจะระบุไว้ใช้กลุ่มๆ ได้สำหรับการติดตั้งหรือไม่ก็ตามแต่ต้อง
ทำการติดตั้งกลุ่มๆ ให้ชัดเจนสำหรับสินค้าทุก ๆ ช่วง ให้มีความต้องเนื่องทางไฟฟ้าโดยตลอดเพื่อเสริมระบบ
การติดตั้งให้มีความแน่นอนและสมบูรณ์

7. การทดสอบ

ให้ทดสอบเพื่อให้เชื่อมั่นได้ว่ามีความต้องเนื่องทางไฟฟ้าทุก ๆ ช่วง ตามความเห็นชอบของผู้คุมงาน
หมวดที่ 18
การทดสอบท่าความสะอาดและการปรับแต่ง

1. การทดสอบระบบท่อหน้า

1.1 ผ่อนน้ำในระบบ ต้องได้รับการทดสอบความดันต่ำกว่าน้ำ ตามวิธีการที่ระบุไว้ในข้อกำหนดการจัดหาเครื่องมือ เครื่องใช้ในการทดสอบในความรับได้ของผู้รับจ้าง
1.2 การทดสอบapanานช่วงตัวๆ ได้ ต้องมีอุณหภูมิและการพิจารณาและอนุมัติของผู้ควบคุมงาน
1.3 การทดสอบความดัน ใช้วัดความดันที่ได้ผลแห่งที่ต้องการทดสอบแล้ว อัปที่ความดันให้สูงขึ้นจนถึงความดันที่ระบุไว้ การทดสอบต้องกระทำความรุ่นเจ้าของผู้ควบคุมงานรวมถึงเจ้าหน้าที่
1.4 ห้อง SCHEDULE 40 หรือ STANDARD WEIGHT ต้องทดสอบความดันไม่น้อยกว่า 1.5 เท่าของความต้านทานสูงสุดที่ใช้งาน แต่ไม่น้อยกว่า 10 เท่าของตัวแรงเสถียรต่ำสุดเบอร์ (150 ปอนด์ต่อตารางนิ้ว) และรักษาความดันไว้ไม่น้อยกว่า 24 ชั่วโมง
1.5 ห้องน้ำที่ต้องได้รับการทดสอบความดันไม่น้อยกว่าความสูงของน้ำ 3 เมตร (10 ฟุต) และรักษาความดันไว้ไม่น้อยกว่า 1 ชั่วโมง หากความต้านแสดงเกินกว่า 5 เบอร์อันดับข้างในแล้วที่ต้องทดสอบ ต้องควบคุมและตรวจสอบ แล้วทดสอบใหม่จนได้ผลเป็นที่พอใจ
1.6 รอบว่าที่ข้องเกี่ยวกับปล่อยน้ำขั้นต่ำและเทปพันปล่อยน้ำ รอบว่าที่รอบขั้นต่ำของท่อออกแล้ว เช็คว่าอยู่
1.7 ยุ่งยากที่พบผู้พันหรือไม่สามารถทดสอบความดันเฉพาะท่อได้ ต้องทดสอบก่อนการทดสอบ

2. การท่าความสะอาดระบบท่อหน้า

2.1 ห้องที่เก็บไว้ในบริเวณหน่วยงานต้องได้รับการป้องกันสูง สิ่งสกปรกและสิ่งที่เก็บรักษาอยู่ ลิ้นหนัก และใช้ปล่อยท่อของสูง
2.2 ระบายอากาศต้องทำรายเดือน ข้อต้อง ต้องท่าความสะอาด โดยใส่สิ่งที่มีภายในออกไปหมด หลังการติดตั้งและทดสอบความดันของระบบท่อของร้อยรอบแล้วให้เดินน้ำถึกเช็คและล้างที่ระบบท่อน้ำของห้อง ตามที่ผู้ผลิตโดยตรง และที่ให้ไว้โดยการติดตั้งเครื่องสูงน้ำให้เหมาะสมในระบบ หลังจากนั้นท่อน้ำที่ระบบท่อน้ำที่ให้ไว้โดยการติดตั้งเครื่องสูงน้ำ

3. การปรับปรุงถ่าน

3.1 ภายหลังการติดตั้งและทดสอบระบบท่อน้ำเสร็จเรียบร้อยแล้ว กำหนดสมองงาน ผู้รับจ้างต้องทำการปรับปรุงเรียบร้อยตามที่ระบุไว้ในระบบ และที่เครื่องบรรจุเหล่าน้ำให้เป็นน้ำน้ำตามต้องการอยู่ในช่วง ±5 เบอร์อันดับที่ระบุไว้ในแบบและรายละเอียด
3.2 การปรับปรุงน้ำจากเครื่องสูบน้ำ ให้พิจารณาผลต่างของความดันน้ำเข้า-ออก และให้ยึดถือ PUMP CURVE ของลูกเดิม
3.3 วัสดุปรับปริมาณเหล้าหลังจากปรับแต่งกระบอกท้ายแต่ละต้องทำเครื่องหมายแสดงสถานที่แน่นอนทุกตัวในเครื่องของ BALANCING VALVE ให้ทำการติดตั้งท่อระบบการปรับปริมาณว่าแล้วและบันทึกค่าจ่ายน้ำร้อน (TURN) ไว้ทุกชุด

3.4 อุปกรณ์หรือ FLOW METER ที่ระบุในแบบและรายการอุปกรณ์ ต้องติดตั้งตามคำแนะนำของผู้ผลิต
หมวดที่ 19
อุปกรณ์ควบคุมความเร็วรอบของモーターグラススリブ
(AC Variable Speed Drive)

1. ความต้องการทั่วไป

ผู้บริจาคเป็นผู้จัดหา และต้องเกี่ยวกับการควบคุมความเร็วรอบของอุปกรณ์ที่ควบคุม และ
จ้านวัตรที่ก้าวหน้าในการประกอบสัญญา รวมถึงอุปกรณ์ประกอบต่าง ๆ ตามที่ระบุในรายละเอียด และที่
จำเป็นสำหรับการใช้งานอย่างสมเหตุผล อุปกรณ์ควบคุมความเร็วรอบอ็อกซ์ จะต้องเป็นรุ่นที่ได้รับการ
ออกแบบมาสำหรับการใช้งานในแบบระบบ HVAC และจะต้องสามารถทำงานได้ในอัลตรา Stand Alone
ciclam สามารถทำงานได้ด้วยตนเอง และสามารถทำงานได้ในลักษณะเป็นส่วนหนึ่งของระบบควบคุมอากาศ โดย
ผ่านระบบ Chiller Plant Manager System ได้

2. วัสดุและอุปกรณ์

อุปกรณ์ควบคุมความเร็วรอบจะต้องเป็นรุ่นมาตรฐาน (Standard Model) ต้องประกอบเป็นชุดสำเร็จรูปจาก
โรงงานสำเร็จรูป (Knock Down) ในประเทศภายใต้การควบคุมของฝ่ายกิจการที่ส่วนการ
ทดสอบมาตรฐานสยามแล้ว (มี Certificate รับรองการกำหนดมาตรฐาน และการทดสอบจากโรงงาน) ผู้ผลิตจะต้องมีมั่นใจว่าสามารถใช้งานในประเทศ ที่มีที่สามารถให้คำแนะนำการติดตั้ง การใช้งานที่
ถูกต้อง และมีประโยชน์ต่ออุปกรณ์ทำให้สามารถ
การรับประกันจากต้นทุนได้ทันที
อุปกรณ์ควบคุมความเร็วรอบ จะต้องผูกอุปกรณ์ให้กับ DC coils ใน Part ของ DC Link เพื่อแสดงตัวอุปกรณ์
เพื่อแสดงตัวอุปกรณ์

ข้อ 1: Harmony ใน Part ของ DC Link เพื่อแสดงตัวอุปกรณ์
ข้อ 2: Harmony ใช้ได้กับอุปกรณ์ควบคุมความเร็วรอบ DC coils ดังกล่าวเพื่อแสดง Harmony ใช้ได้กับอุปกรณ์ควบคุมความเร็วรอบของระบบ
ข้อ 3: Harmony โดยจะต้องใช้ติดตั้งในระบบ (Harmonic Filter) ที่ติดตั้งต่อไปยังจุดที่ใช้อุปกรณ์ควบคุมความเร็วรอบ
ข้อ 4: Harmony ในระบบไฟฟ้าของอาคาร เพื่อ

ความต้องการทางเทคนิค

1. Supply voltage : 3 Phase 380-480 V. ±10%
2. Supply frequency : 50/60 Hz ± 5%
3. Displacement Power Factor (cosφ) : > 0.98 (near unity)
4. Environment according to EN60664-1 : Overvoltage category III / Pollution degree 2
5. Output voltage : 0-100% of supply voltage
6. Output frequency : 0-1,000 Hz.
7. Switching on output : Unlimited
9. Starting torque : 110% for 1 min. (Max. torque: 135% for 0.5 sec.)
10. Max. motor cable length : 300 m.
11. Digital inputs : 6
12. Analogue Inputs / Output : 2AI (0-10 VDC, 0/4-20 mA) / 1AO (0/4-20 mA)
13. Relay outputs : 2
14. Speed, accuracy : +/- 0.003 Hz.
15. Enclosure : IP55 integral with no additional cabinets
16. Vibration test : 1.0 g
17. Aggressive environment : IEC 721-3-3 class 3C2
18. Relative humidity : 5%-95% (IEC 721-3-3; class 3K3(non-condensing) during operation
19. Ambient temperature : Max. 50°C without derating
20. Temperature during storage/transport : -25 - +65/70°C
21. Max. altitude above sea level without / with derating : 1000 m / 3000 m
23. EMC standards Emission : EN 61800-3, EN 61000-6-3/4, EN 55011, IEC 61800-3,
 EN 61800-3, EN 61000-6-1/2
24. Voltage Sag Immunity : SEMI F47-0706
25. Efficiency at rated frequency : Minimum 96-99%
26. EMC standard, Immunity
 - EN61000-4-2(IEC 1000-4-2) : Electrostatic discharges (ESD)
 - EN 61000-4-3 (IEC 1000-4-3) : incoming electromagnetic field radiation, amplitude modulated
 - EN 61000-4-4 (IEC 1000-4-4) : Burst transients
 - EN 61000-4-5 (IEC 1000-4-5) : Surge transients
 - EN 61000-4-6 (IEC 1000-4-6) : RF Common mode

3. มาตรฐานการติดตั้งอุปกรณ์

ผู้ผลิตจะต้องพิจารณาการติดตั้งอุปกรณ์ตามคุณสมบัติวิเคราะห์ให้เป็นไปตามมาตรฐานการติดตั้งที่ถูกต้อง
ต้องที่ผนัง

3.1 Mechanical installation

การติดตั้ง จะต้องคำนึงถึงระยะทางการระบายความร้อนของอุปกรณ์จากตัวอุปกรณ์ ให้เป็นไปตาม
มาตรฐานที่ระบุไว้ในคู่มือการติดตั้งของอุปกรณ์นั้นๆ

3.2 Electrical installation (EMC correct installation standard)

3.2.1 Input main cable เลือกสายไฟที่มีความ แยกจาก สาย control และ สายมอเตอร์

3.2.2 Output motor cable ใช้สาย Screen cable และมีการ ground อย่างถูกต้อง

กรณีไม่ใช้ Screen Cable ให้ติดตั้งสายมอเตอร์ที่แยกจาก VSD ในแหล่งไฟฟ้า พร้อมทั้ง
ต่อ Ground อย่างถูกต้อง
4. มาตรฐานอุปกรณ์ : ต้องได้มาตรฐาน UL, หรือเทียบเท่า

4.1 VSD ต้องได้คุณสมบัติความไว้งานระบบปรับอากาศและระบบอากาศโดยรวม (HVAC)

4.2 VSD จะต้องมีระบบประหยัดพลังงานอัตโนมัติ (Automatic Energy Optimization; AEO) ซึ่งสามารถปรับแรงดันเพื่อให้พลังงานที่ใช้เป็นเท่าที่จำเป็นเท่านั้น ทั้งนี้ตามที่กำหนดไว้ใน Constant Torque จะต้องเป็นแบบ Variable Torque เพื่อลดกระแสที่จำเป็นให้ยั่งยืนซึ่งจะทำให้ประสิทธิภาพพลังงานสูงสุด

4.3 VSD จะต้องสามารถทำงานได้ต่อเนื่องและ Stand Alone คือรับสัญญาณจาก Sensor ได้โดยตรง และมีชุดควบคุมแบบ PID Controller ในการควบคุมทั้งหมด ที่สามารถแสดงผลได้ทุกอย่างของ Sensor ได้ที่หน้าจอแสดงผลของ VSD เช่น bar, Pa, °C, GPM, CFM, in wg, PSI, °F เป็นต้น รวมทั้งสามารถปรับค่า Set point ได้ตามความต้องการ

4.4 VSD จะต้องมีการ RFI Filter เพื่อลดสัญญาณระบบความถี่สูง ตามมาตรฐาน EMC (Electromagnetic compatibility) EN55011 โดยตัวอุปกรณ์ VSD ต้องมี RFI filter ซึ่งได้มาตรฐาน EN55011 class A (150 meters) และ class B (50 meters)

4.5 VSD ต้องมีปุ่มเดิน Hand-Off-Auto โดยล่างจากหน้าจอ, หุ้นการทำงาน และส่วนงานจากลิ้นชัก

4.6 VSD ต้องมีการปรับปรุงไฟฟ้าที่แยกตัวออโตแมติก (Automatic Motor Adaptation; AMA) เพื่อให้ VSD ยั่งยืนและมีประสิทธิภาพสูงสุด

4.7 VSD มีระบบการหยุดตัวเอง (Sleep mode) เมื่อทำงานที่ความเร้าต่อต่ำ โดยที่สามารถควบคุมได้ตามความต้องการในแต่ละ VSD เพื่อค่าความควบคุม, หลอดลม และปรับแต่งระบบได้

4.8 VSD ต้องมีการปรับอัตโนมัติ (Automatic Ramping) ในกรณีที่ต้องการ หุ้นควบคุมหรือเปลี่ยนความเร็ว เพื่อให้ได้กิจการที่เหมาะสมที่จะทำงานอย่างปลอดภัย

4.10 VSD ต้องสามารถทำงานได้ในลักษณะเป็นส่วนหนึ่งของระบบควบคุมอาคาร (Building Management System) ตาม Serial Communication แบบ RS 485 โดยมี Protocol ที่ทำงานร่วมกับ BMS ได้คือ Metasys N2, FC Protocol, FLN Apogee, Modbus RTU เป็นมาตรฐาน และสามารถรองรับ Protocol แบบอื่นได้ เช่น Lonwoks, BACNet, DeviceNet, Profibus เป็นต้น

4.11 VSD มีระบบ Fire mode ซึ่งสามารถทำงานได้อย่างไม่ต้องมีระบบป้องกัน เพื่อให้ VSD ทำงานได้เสถียรแบบ Bypass

4.12 VSD เป็นแบบ IP55 เพื่อป้องกันน้ำและฝุ่น โดยติดตั้งถังเก็บ

4.13 หน้าจอของ VSD เป็นตัวหนังสือแบบ Alphanumeric Display ที่สามารถอ่านคำที่ต่างๆ ให้อย่างชัดเจน เพื่อให้ผู้ใช้สามารถเข้าใจและใช้งานได้โดยง่าย
4.14 สามารถสลับค่าพารามิเตอร์แบบมี Pass word เพื่อป้องกันผู้ไม่เกี่ยวข้องมาปรับค่าได้
4.15 VSD ต้องมี LED แสดงสถานะ On, Warning และ Alarm บน Control panel
4.16 VSD ต้องมีมิติร์ไม้ไผ่ที่สามารถอ่านและแสดงค่าได้ เช่น ความถี่อ้างอิง(%) ความถี่(Hz) กระแส(A) กำลังไฟฟ้า(kW) พลังงาน(kWh) ช่วงเวลาการทำงาน(Hours) แรงดัน(Volt) ขณะเดียวกันพิจารณา Heat sink(°C) เป็นต้น
4.17 VSD ต้องแยกกลุ่มควบคุมและภาคแฟร์รี่แบบ Galvanic Isolation ป้องกันการส่งข่ายที่เกิดจากภาคแฟร์รี่
4.18 VSD ต้องมีการป้องกันฉนวนของคลาวด์มอเตอร์ โดยไม่ทำให้เกิด Peak Voltage หรือ dU/dt ที่ถูกยอมรับไม่เกินกว่า 1040 V. ถ้าไม่มีหรือมีกำลังดันสูง ให้ติดตั้ง LC Filter เพื่อป้องกันภาพของ VSD เพื่อป้องกันฉนวนของคลาวด์มอเตอร์
4.19 VSD จะต้องมี Harmonic Filter แบบ D.C. Col1 ที่ส่วน Inductive และ Capacitive เพื่อลดกระแส harmonic ที่เกิดขึ้น และไม่ทำให้เกิดแรงดันอัตรากลับที่ Col1 ที่อาจทำให้การร่ายโหลดได้ไม่เต็มที่ ตามมาตรฐาน IEEE519-1992
4.20 VSD สามารถดูเวลาการทำงานได้จาก Real Time Clock เพื่อให้ VSD ทำงานตามเวลาที่กำหนดได้ 20 นาที
4.21 VSD สามารถเก็บ Faults ที่เกิดขึ้นย้อนหลังได้อย่างน้อย 10 คำ
4.22 VSD จะต้องมีระบบการป้องกันดังนี้
- Electronic motor thermal protection
- Mains imbalance
- Overvoltage
- Undervoltage
- Motor overloaded
- Current limit
- Overcurrent
- Earth fault
- Short-circuit
- Heat-sink over temperature
- Motor phase missing
- Inverter fault
หมวดที่ 20
ตัวอย่างอุปกรณ์มาตรฐาน

1. วัตถุประสงค์

รายละเอียดในหมวดนี้ได้แจ้งให้รายชื่อผู้ผลิตและผลิตภัณฑ์ วัสดุ และอุปกรณ์ที่ถือว่าได้รับการยอมรับ
ทั่วไปถูกสมบัติของอุปกรณ์นั้นๆ ต้องไม่จำกัดรายละเอียดเฉพาะที่กำหนดไว้ การเสนอผลิตภัณฑ์
นอกเหนือจากที่ได้ให้ไว้ ต้องแสดงเอกสาร รายละเอียด และหลักฐานถูกต้องอย่างเพียงพอ เพื่อการ
พิจารณาอนุญาตให้ใช้งานโดยมีคุณภาพที่ยอมรวมกัน

2. รายชื่อผู้ผลิตและผลิตภัณฑ์ของวัสดุและอุปกรณ์มาตรฐาน

ให้เป็นไปตาม LIST OF EQUIPMENT ต่อไปนี้:

2.1 PUMP
- EBARA
- PACO
- AURORA
- PEERLESS
- WILO

2.2 BLACK STEEL PIPE
- SAHA THAI, STEEL PIPE
- THAI STEEL PIPE
- SIAM STEEL PIPE

2.3 GATE, GLOBE, BALL VALVE
- KITZ
- CRANE
- NIBCO
- TOYO
- SHOWA
- WATT
- KEYSTONE
2.4 BUTTERFLY VALVES
 • KEYSTONE, USA
 • CRANE, USA
 • NIBCO, USA
 • WATTS, USA
 • KITZ, JAPAN

2.5 SILENT CHECK VALVE
 • CRANE, USA
 • CRISPIN
 • METRAFLEX, USA
 • KITZ, JAPAN
 • NIBCO, USA
 • VALMATIC, USA

2.6 FLOW METER
 • TACO, USA
 • ANNUBAR-EAGLE EYE, USA
 • CRANE, UK
 • BELL & GOSSETT, USA

2.7 BALANCING VALVE WITH FLOW METER AND SHUT OFF VALVE
 • TAC, SWEDEN
 • CRANE, UK

2.8 FLEXIBLE PIPE CONNECTION
 • METRAFLEX, USA
 • MASON, USA
 • TOZEN, JAPAN

2.9 SPRING VIBRATION ISOLATOR
 • MASON, USA
 • TOZEN, JAPAN
2.10 WATER STRAINER
- METRAFLEX, USA
- VALMATIC, USA
- CRANE, USA
- WATTS, USA

2.11 AUTOMATIC AIR VENT
- CRISPIN, USA
- SOCLA, FRANCE

2.12 FLOW SWITCH
- MCDONNELL, USA
- JOHNSON CONTROL, USA

2.13 PRESSURE GAUGE & THERMOMETER
- TRERICE, USA
- WEKSLER, USA
- WEISS, USA

2.14 INSULATION ADHESIVE
- NEO-BOND, JAPAN
- AEROSEAL, THAILAND

2.15 AUTOMATIC CONTROL EQUIPMENT
- JOHNSON CONTROL, USA
- TAC, SWEDEN
- SIEMENS, GERMANY
- HONEYWELL, USA
- INVENSYS, USA
- DANFOSS, DENMARK

2.16 CLOSED CELL FOAMED PLASTIC (CLOSED CELL ELASTOMERIC INSULATION)
- AEROFLEX, THAILAND
- ARMAFLEX, THAILAND
2.17 ELECTRICAL CONDUCTOR
- PHELPS DODGE
- THAI YAZAKI
- BANGKOK CABLE

2.18 ELECTRICAL CONDUIT
- PANASONIC
- RSI

2.19 STARTER
- SIEMENS
- ABB
- TELEMECANIQUE, FRANCE

2.20 CABLE TRAY, CABLE LADDER, WIREWAY
- SCI ELECTRIC MANUFACTURER
- SIAM METAL WORKS INDUSTRIES (SMC)
- SIAM INDUSTRIAL MANUFACTURER (SIM)
- TIC MANUFACTURING
- UI, THAILAND

2.21 WATER CHILLER
- TRANE
- YORK
- CARRIER
- DUNHAM – BUSH
- DAIKIN

2.22 COOLING TOWER
- LIANG CHI
- THAI COOLING TOWER
- NIHON SPINDLE
2.23 AC Variable Speed Drive

- DANFOSS
- ABB
- SIEMENS
- TELEMECANIQUE
ชิลเลอร์พลาล์ต แมเนจเมนต์ เซสตีว์ (CPMS)

ระบบจัดการอุปกรณ์ของห้องเคิลของกำลังยึด เป็นอุปกรณ์ที่เชื่อมต่อกับตัวรับและวิเคราะห์การทำงานของเครื่องทำน้ำเย็น เครื่องสูบนำผ่าน เครื่องสูบนำผ่านยึด และอุปกรณ์จ่ายน้ำในแต่ละสถานะการทำงานรวมกันให้สัมพันธ์กับการควบคุมอุณหภูมิของอากาศ

ผู้ใช้ต้อง ต้องจัดทำและจัดตั้งระบบการจัดการอุปกรณ์ของห้องเคิลของกำลังยึดตามที่กำหนดในแบบรายละเอียดต่างๆ มีดังนี้

1. เครื่องทำน้ำเย็น (Chiller)

ระบบการจัดการอุปกรณ์ของห้องเคิลของกำลังยึดจะต้องแสดงผลการทำงานของเครื่องทำน้ำเย็น โดยที่ Chiller Unit Control Panel ของเครื่องทำน้ำเย็นแต่ละตัว สามารถติดต่อสื่อสารกับระบบการจัดการอุปกรณ์ของห้องเคิลของกำลังยึดเพื่อแสดงผลการทำงาน แสดงค่าที่วิเคราะห์การทำงานของเครื่องทำน้ำเย็นแต่ละตัว และทั้งระบบ มีระบบการรายงานของ Motorized Valves สำหรับ 1 ปิด - เปิด น้ำเย็นเข้า และน้ำเหลืองอุณหภูมิของเครื่องทำน้ำเย็นแต่ละตัว

2. เครื่องสูบน้ำเย็น (Chilled Water Pumps)

ระบบการจัดการอุปกรณ์ของห้องเคิลของกำลังยึดจะต้องแสดงผลการทำงานของเครื่องสูบน้ำเย็น โดยแสดงผลการทำงาน สามารถเชื่อมต่อกับเครื่องสูบน้ำเย็นใช้งานจริงอยู่แบบ Real Time โดยเข้าจาก Diff Pressure Water Switch นิยามกันไว้ หรือ Current Switch และมีการเข้าดูการทำงาน

3. Master Controller จะต้องมีความสามารถทางด้านโปรแกรมดังนี้

\[\text{3.1 สามารถรองรับเครื่องทำน้ำเย็นได้ไม่น้อยกว่า 4 ชุด} \]
\[\text{3.2 สามารถเชื่อมต่อกับเครื่องสูบน้ำเย็นได้ } \]
\[\text{3.3 สามารถพิมพ์และขยาย Memory แบบ Ram ได้ } \]

4. Software ระบบการจัดการอุปกรณ์ของห้องเคิลของกำลังยึดจะต้องมีความสามารถทางด้านโปรแกรมดังนี้

\[\text{4.1 Monitoring โดยสามารถแสดง Animation Graphic ภาพเคลื่อนไหวของ Chiller Plant} \]
\[\text{พร้อมแสดงรายละเอียดของ Chiller ดังนี้} \]

\[\bullet \text{Status Of Chillers and Pumps} \]
\[\bullet \text{System Chilled Water Temperature} \]
\[\bullet \text{Chilled Water Reset Sensor Temperature} \]
\[\bullet \text{Chilled Water Setpoint Source} \]
\[\bullet \text{Run Hours/Current Start} \]
\[\bullet \text{Diagnostic Status} \]
\[\bullet \text{Number Of Compressor Starts} \]
\[\bullet \text{Chiller Capacity (% RTs)} \]
\[\bullet \text{Current Limit} \]
5. PC Workstation

WORKSTATION PERSONEL COMPUTER ของ ระบบการจัดการอุปรัฐภณ์ของห้องเครื่องทำนำ้เย็น จะต้องมีคุณสมบัติไม่น้อยกว่า รายละเอียด:
- Processor: Intel Core i3 3.4 GHz
- Monitor: 21 inches, LCD Monitor
- Memory: 2GB DDR2
- Hard Drive: Hard Disk 500GB
- Pre load Software: Microsoft Windows 7

6. Wiring

การติดต่อสื่อสารระหว่าง Master Controller และ Controller ในระบบการจัดการอุปรัฐภณ์ของห้องเครื่องทำนำ้เย็นควรจะเป็นการติดต่อสื่อสารสองทาง (Bi-Directional Communication) ด้วย เร็วไม่น้อยกว่า 56Kbps โดยใช้สายคู่เทขายึดไข่บดนก และมีตัวนำนองกันลวดสัญญาณยาว (Single Twisted Wire Pair Shielded) สายไฟตัวนำจะต้องเป็นตัวต้นันเส้นเล็กยาวจนถึงปลายทางที่ 7 เส้น / 1 สายต้นนำ (Strand Wire) มีพื้นที่ทำติดตามแล้วไม่น้อยกว่า 0.8 ตารางมิลลิเมตร สายไฟสำหรับสัญญาณ Analog Input และ Analog Output ควรใช้สายสำหรับ Communication ยาวสัญญาณ Binary Input และ Binary Output ควรใช้สายไฟชนิด Thw มีขนาดตั้งค่าที่ทำติดไม่น้อยกว่า 0.8 ตารางมิลลิเมตร

สายสัญญาณ Input, Output และสาย Communication จะต้องเดินอยู่ในท่อเดินสายไฟชนิด EMT เมื่อยู่ภายในอาคารและชนิด IMC เมื่อยู่ภายนอกอาคาร สำหรับสายไฟสำหรับแหล่งจ่ายไฟ (Power Supply) ของ Controller จะต้องเดินอยู่ในท่อเดินสายไฟชนิดยาวกัน แต่จะต้องไม่เดินสาย Power Supply ในท่อเดียวกันกับสายสัญญาณ

7. Mimic Diagram

แสดงการทำงานของ CHILLERS, PUMPS, COOLING TOWERS โดยทำเป็นแผนผังขาดใหญ่พร้อมมีหลักที่แสดงสถานะการทำงานของอุปรัฐภณ์นี้ ๆ โดยให้ผู้รับผิดชอบออกแบบ SHOP DRAWING ก่อนระหว่างอนุมัติจากผู้ดูแล
เขียนโดย ..
(นายณัฐพล นพพานรักษา)
วิศวกรเครื่องกลปฏิบัติการ

ตรวจสอบ...
(นายสุธาวน์ นพพชชว)
วิศวกรเครื่องกลชำนาญการ

เพื่อนชอบ...
(นายสุทธาทิพย์พรหมวงศ์)
วิศวกรเครื่องกลเชี่ยวชาญ

อนุมัติ...
(นายสิทธิ์ คุณาโชคพานิชย์)
ผู้อำนวยการสำนักวิศวกรรมเครื่องกลและงานระบบ